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1.1 INTRODUCTION 
1.1.1 Fundamental physical constants 

 Avogadro’s number:   NA = 6.022 × 1023 atoms/mol 
 

 Speed of light in vacuum:  c ≈ 3 × 108 m/s 
 

 Electron charge:   e = 1.602 × 10–19 C 
 

 Electron/positron rest mass:  me = 0.511 MeV/c2 

 
 Proton rest mass:   mp = 938.3 MeV/c2 

 
 Neutron rest mass:   mn = 939.6 MeV/c2 
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1.1 INTRODUCTION 
1.1.1 Fundamental physical constants 

 Atomic mass unit:         u = 931.5 MeV/c2 
 

 Planck’s constant:         h = 6.626 × 10–34 J · s 
 

 Electric constant:        ε0 = 8.854 × 10–12 C · V–1 · m–1 
     (permittivity of vacuum): 
 

 Magnetic constant:         µ0 = 4π × 10–7 V · s · A–1 · m–1  
     (permeability of vacuum) 
 

 Gravitation constant:         G = 6.672 × 10–11 m3 · kg–1 · s–2 
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1.1 INTRODUCTION 
1.1.2. Physical quantities and units 

The SI system of units is founded on base units for seven  
physical quantities: 
 

Quantity     SI unit 
Length l     meter (m) 
mass m     kilogram (kg) 
time t     second (s) 
electric current I    Ampère (A) 
temperature T    kelvin (K) 
amount of substance   mole (mol) 
luminous intensity   candela (cd) 
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1.1 INTRODUCTION 
1.1.2. Physical quantities and units 

Basic quantities and 
several derived 
physical quantities 
and their units in SI 
units: 
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1.1 INTRODUCTION 
1.1.4. Classification of ionizing radiation 

 Ionizing radiation carries enough energy per quantum to 
remove an electron from an atom or molecule 
 

• Introduces reactive and potentially damaging ion into the 
environment of the irradiated medium 
 

• Can be categorized into two types:  
 

• Directly ionizing radiation  
• Indirectly ionizing radiation 

• Both can traverse human tissue 
• Can be used in medicine for imaging & therapy 
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1.1 INTRODUCTION 
1.1.5. Classification of indirectly ionizing photon radiation 

 Consists of three main categories: 
• Ultraviolet: limited use in medicine 
• X ray: used in disease imaging and/or treatment  

• Emitted by orbital or accelerated electrons 
• γ ray: used in disease imaging and/or treatment  

• Emitted by the nucleus or particle decays 
• Difference between X and γ rays is based on the radiation’s origin 

 

 The origin of these photons fall into 4 categories: 
• Characteristic (fluorescence) X rays 
• Bremsstrahlung X rays 
• From nuclear transitions 
• Annihilation quanta 
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1.1 INTRODUCTION 
1.1.6. Characteristic X rays 

 Orbital electrons inhabit atom’s minimal energy state  
 

 An ionization or excitation process leads to an open 
vacancy  
 

 An outer shell electron transitions to fill vacancy (~nsec)  
 

 Liberated energy may be in the form of: 
 

• Characteristic photon (fluorescence) 
• Energy = initial state binding energy - final state binding energy 
• Photon energy is characteristic of the atom 

• Transferred to orbital electron that  
• Emitted with kinetic energy = transition energy - binding energy 
• Called an Auger electron  
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1.1 INTRODUCTION 
1.1.7. Bremsstrahlung  

 Translated from German as 'breaking radiation' 
 Light charged particles (β− & β+) slowed down by 

interactions with other charged particles in matter  
(e.g. atomic nuclei) 

 Kinetic energy loss converted to electromagnetic radiation 
 Bremsstrahlung energy spectrum 

• Non-discrete (i.e. continuous)  
• Ranges: zero - kinetic energy of initial charged particle 

 Central to modern imaging and therapeutic technology 
• Can be used to produce X rays from an electrical energy source 

Nuclear Medicine Physics:  A Handbook for Teachers and Students – Chapter 1 –  Slide 10/101 



IAEA 

1.1 INTRODUCTION 
1.1.8. Gamma rays 

 Nuclear reaction or spontaneous nuclear decay may leave 
product (daughter) nucleus in excited state 
 

 The nucleus can transition to a more stable state by 
emitting a γ ray 
 

 Emitted photon energy is characteristic of nuclear energy 
transition 
 

 γ ray energy typically > 100 keV & wavelengths < 0.1 Å 
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1.1 INTRODUCTION 
1.1.9. Annihilation quanta  

 Positron results from: 
 

• β+ nuclear decay  
• high energy photon interacts with nucleus or orbital electron electric 

field  
 

 Positron kinetic energy (EK) loss in absorber medium by 
Coulomb interactions: 
 

• Collisional loss when interaction is with orbital electron  
• Radiation loss (bremsstrahlung) when interaction is with the nucleus  
• Final  collision (after all EK lost) with orbital electron (due to Coulomb 

attraction) called positron annihilation 
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1.1 INTRODUCTION 
1.1.9. Annihilation quanta  

 During annihilation 
• Positron & electron disappear  
• Replaced by 2 oppositely directed annihilation quanta (photons) 
• Each has energy = 0.511 MeV 
• Conservation laws obeyed: 

• Electric charge, linear momentum, angular momentum, total 
energy  

 

 In-flight annihilation 
• Annihilation can occur while positron still has kinetic energy 
• 2 quanta emitted  

• Not of identical energies  
• Do not necessarily move at 180º 
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1.1 INTRODUCTION 
1.1.10. Radiation quantities and units 

 Exposure: X  
 

• Ability of photons to ionize air 
 

 Kerma: K (acronym for Kinetic Energy Released in MAtter)  
 

• Energy transferred to charged particles per unit mass of the 
absorber 

• Defined for indirectly ionizing radiation 
 

 Dose (also referred to as absorbed dose): 
 

• Energy absorbed per unit mass of medium 
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 Equivalent dose: 𝐻𝐻T 
• Dose multiplied by radiation weighting factor wR 

• When different types of radiation are present, 𝐻𝐻T is the 
sum of all of the individual weighted contributions 

 Effective dose: E  
• 𝐻𝐻𝑇𝑇 multiplied by a tissue weighting factor wT 

 Activity: A  
• Number of nuclear decays per unit time 
• Its SI unit, becquerel (Bq), corresponds to one decay per 

second 
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1.1 INTRODUCTION 
1.1.10. Radiation quantities and units 
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1.2 BASIC DEFINITIONS FOR ATOMIC STRUCTURE  
 

 Constituent particles forming an atom are: 
• Proton 
• Neutron 
• Electron 

 

 mp/me = 1836 
 

 Atomic number: Z 
• Number of protons and number of electrons in an atom 

 

 Atomic mass number: A 
• Number of nucleons in an atom = Z + N 
• Z = number of protons 
• N = number of neutrons 

known as nucleons 
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 Atomic mass: ma 
 
• Mass of an atomic particle or molecule is expressed in atomic mass 

units u 
 

• 1 u  
• 1/12th  mass of carbon-12 atom 
• 931.5 MeV/𝑐𝑐2 

 

• ma < sum of masses of constituent particles: intrinsic energy 
associated with binding the particles (nucleons) in the nucleus 
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 Molecular mole  
• For a given molecular compound, there are NA molecules per mole 

of the compound 
• NA = 6.022 X1023 mol−1 

 

 The mass of a molecular mole will be the sum of the 
atomic mass numbers of the constituent atoms in the 
molecule 
 

 For example: 
• 1 mole of water (H2O) is 18 g of water 
• 1 mole of CO2 is 44 g of carbon dioxide 
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 For all elements the ratio Z/A ≈ 0.4-0.5 with 1 notable  
exception: 
• Hydrogen, for which Z/A = 1 

 

 The ratio Z/A gradually decreases with increasing Z: 
• From ~0.5 for low Z elements 
• To ~0.4 for high Z elements 

 

 For example:  
• Z/A = 0.50 for 

• Z/A = 0.45 for 

• Z/A = 0.39 for   
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 Most of the atomic mass is concentrated in the atomic 
nucleus 
 

 Nucleus consists  
• Z protons  
• A - Z neutrons,  

where Z  = atomic number and A = atomic mass 

 
 Protons and neutrons  

• Commonly called nucleons  
• Bound to the nucleus with the strong force 
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1.3. BASIC DEFINITIONS FOR NUCLEAR STRUCTURE 
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 Nuclear physics conventions  
• Designate a nucleus X as 

 
 For example: 

• Cobalt-60 nucleus  
• Z = 27 & A = 60 (i.e. 33 neutrons) 
• identified as: 

 
• Radium-226  
• Z = 88 & A = 226 (i.e.138 neutrons) 
• identified as: 

1.3. BASIC DEFINITIONS FOR NUCLEAR STRUCTURE 
 

XA
Z

Co60
27

Ra226
88
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 Classifications 
 

• Isotopes of an element 
• Atoms with same Z, but different number of neutrons (and A) 
• e.g. 
• ‘Nuclide’ refers to an atomic species, defined by its makeup of 

protons, neutrons, and energy state 
• ‘Isotope’ refers to various atomic forms of a given chemical 

element  
• Isobars 

• Common atomic mass number A  
• e.g. 60Co and 60Ni  

 

1.3. BASIC DEFINITIONS FOR NUCLEAR STRUCTURE 
 

Co59
27 Co60

27
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 Classifications 
 

• Isotones 
• Common number  of neutrons 
• e.g. 3H (tritium) and 4He 

 

• Isomeric (metastable) state 
• Excited nuclear state that exists for some time 
• e.g 99mTc is an isomeric state of 99Tc 

 

1.3. BASIC DEFINITIONS FOR NUCLEAR STRUCTURE 
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 EB/A (Binding energy per nucleon) 
 

• Varies with A  
 

• ~8 MeV/nucleon 
 

• Rises rapidly at small A 
 

• Broad maximum  
• ~ 8.7 MeV/nucleon  
• A ≈ 60  

 

• Gradual decrease at large A 
 

• Larger value implies atom more stable 
 

• Most stable nuclei have A ≈ 60  
• Fe, Co, Ni 

1.3. BASIC DEFINITIONS FOR NUCLEAR STRUCTURE  
 1.3.2. Nuclear binding energy 
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 EB/A vs. A curve suggests 2 methods for mass to energy 
conversion: 
1) Fusion of low A nuclei  

• Creates a more massive nucleus  
• Releases energy  
• Presently, controlled fusion for energy production not 

successful in net energy generation 
• Remains active field of research  

 

1.3. BASIC DEFINITIONS FOR NUCLEAR STRUCTURE  
 1.3.3. Nuclear fusion and fission 
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2) Fission of large A nuclei 
• Bombardment of large mass elements (e.g. 235U) by thermal 

neutrons will create 2 more stable nuclei with lower mass 
• Process transforms some mass into kinetic energy 
• Fission reactors are important means of production of 

electrical power 
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 2 particle collision  
• Projectile: mass m1, velocity υ1, kinetic energy (EK)1  
• Stationary target : mass m2 & υ2 = 0 
• Results in intermediate compound  
• Decays into 2 reaction products: (m3, υ3) and (m4, υ4) 
• Cross-section (probability for collision) & collision outcome 

depends on: 
• Projectile mass, charge, velocity, kinetic energy 
• Stationary target mass, charge 
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 Projectile + target collision: 
most general case 

 

• Results in intermediate compound  
• Decays into 2 reaction products:  

• m3 ejected with υ3 at θ to  incident 
projectile direction 

• m4 ejected with υ4 at φ to incident 
projectile direction 

1.3. BASIC DEFINITIONS FOR NUCLEAR STRUCTURE  
 1.3.4. Two-particle collisions and nuclear reactions 
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 Two-particle collisions classified into 3 categories: 
 

1)  Elastic  
 

• Products after identical to products before collision 
• m3 = m1 and m4 = m2 

• Total kinetic energy & momentum before & after 
collision are equal 

 
 

 

1.3. BASIC DEFINITIONS FOR NUCLEAR STRUCTURE  
 1.3.4. Two-particle collisions and nuclear reactions 
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2) Inelastic projectile scattering 
 

• Products after identical to products 
before collision 

• Incident projectile transfers portion 
of its EK to target as EK + intrinsic 
excitation energy E* 
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3)  Nuclear reaction 
 

• 2 products m3 + m4, with new Z 
• Physical quantities must be conserved 

• Charge 
• Linear momentum 
• Mass–energy 
• Sum of Z’s & sum of A’s 

1.3. BASIC DEFINITIONS FOR NUCLEAR STRUCTURE  
 1.3.4. Two-particle collisions and nuclear reactions 

     

Nuclear Medicine Physics:  A Handbook for Teachers and Students – Chapter 1 –  Slide 30/101 

 



IAEA 

            is calculated from the relativistic invariant = smallest 
value of projectile EK at which reaction will take place: 
 
 
 
 
 

 m1c2, m2c2, m3c2 and m4c2 are rest energies of projectile 
m1, target m2 & reaction products m3 and m4, respectively 
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 Decay of radioactive parent P into stable daughter D, with decay 
constant λP: 
 
 

 Rate of depletion of the number of radioactive parent nuclei, NP(t), is 
equal to the activity AP(t) at time t:  
 
 

 
 Fundamental differential equation for NP(t) can be rewritten in integral 

form:  
 

 
• NP(0) is the initial number of parent nuclei at time t = 0 

1.4. RADIOACTIVITY 
 1.4.1. Decay of radioactive parent into a stable or unstable daughter  
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 Number of radioactive parent nuclei as a function of time t, assuming 
that λP is constant, is: 
 
 

 
 

 Activity of the radioactive parent AP(t) as a function of time t: 
 

 
• where AP(0) is the initial activity at time t = 0 

 

 Decay law applies to all radioactive nuclides irrespective of decay 
mode 
 

 

1.4. RADIOACTIVITY 
 1.4.1. Decay of radioactive parent into a stable or unstable daughter  
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 Half-life, (T1/2)P,of radioactive parent P is the time during 
which the number of radioactive parent nuclei decays from 
the initial value, NP(0), at time t = 0 to half the initial value 
(AP(t) also decreases to half of its initial value) 

 
 
 
 
 

 λP & (T1/2)P are related as follows: 
 

 
 

1.4. RADIOACTIVITY 
 1.4.1. Decay of radioactive parent into a stable or unstable daughter  
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 Mean (average) life τP of a radioactive parent P is the time 
during which the number NP of radioactive nuclei or its 
activity AP falls to 1/e = 0.368 (or 36.8%) of NP(0) or of 
AP(0), respectively 
 

 
 
 
 

 λP & (T1/2)P are related as follows: 
 

 
 

1.4. RADIOACTIVITY 
 1.4.1. Decay of radioactive parent into a stable or unstable daughter  
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 Activity AP(t) plotted against time t for a simple decay of a 
radioactive parent P to stable or unstable daughter D: 
 
 
 
Illustrates: 
 

• Concept of (T1/2)P  
• Concept of τP  
• Exponential decay  
• Area under curve from t = 0 to t = ∞ is equal to AP(t) x τP  
• Slope of tangent to decay curve at t = 0 is λP  x AP(0) 
• Abscissa intercept at t = τP 
 
 
 
 

 

 
 

1.4. RADIOACTIVITY 
 1.4.1. Decay of radioactive parent into a stable or unstable daughter  
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 Decay of radioactive parent P into unstable daughter D which in turn 

decays into granddaughter G: 
 
 
 
 

 Rate of change dNP/dt in the number of daughter nuclei D equals to 
supply of new daughter nuclei through decay of P given as λPNP(t) & the 
loss of daughter nuclei D from the decay of D to G given as −λDND(t)  
 
 
 
 
 

1.4. RADIOACTIVITY 
 1.4.2. Radioactive series decay 
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 Number of daughter nuclei is, assuming no daughter D nuclei present 
initially, i.e. ND(0) = 0: 
 
 
 

 Activity of the daughter nuclei is: 
 
 
 
 
 

 
 

• AD(t)  = activity at time t of daughter = λDND(t) 
• AP(0) = initial activity of parent at time t = 0 
• AP(t)  = activity of parent at time t = λPNP(t) 
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 Daughter activity AD(t) vs time  
 

• For the case AD(0) = 0 
• Daughter activity initially rises with time t 
• Reaches maximum at characteristic time 

t = (tmax)D 

• Diminishes to reach 0 at t = ∞ 
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 1.4.2. Radioactive series decay 

Parent and daughter activities 
against time for 

P  D  G 
λP λD 
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 Radioactive equilibrium  
 

• Occurs in many P → D → G relationships 
• Parent & daughter activities reach constant ratio after a certain time t 

 

 AD(t)/AP(t) ratio behaviour: 
 

 
 

 

1.4. RADIOACTIVITY 
 1.4.3. Equilibrium in parent — daughter activities 
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 Nuclear activation 
 

• Bombardment of a stable nuclide with a suitable energetic particle or 
high energy photons to induce a nuclear transformation 
• Neutrons from nuclear reactors for neutron activation 
• Protons from cyclotrons or synchrotrons for proton activation 
• X rays from high energy linear accelerators for nuclear 

photoactivation  
 

1.4. RADIOACTIVITY 
 1.4.4. Production of radionuclides (nuclear activation)  
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 Neutron activation important in production of radionuclides 
used for 
• External beam radiotherapy 
• Brachytherapy 
• Therapeutic nuclear medicine 
• Nuclear medicine imaging  (molecular imaging) 

 Proton activation important in production of positron 
emitters used in  
• Positron emission tomography (PET) imaging 

 Nuclear photoactivation important from a radiation 
protection point of view 
• Components of high energy radiotherapy machines become 

activated during patient treatment  
• Potential radiation risk to staff using equipment 
 

 

 

1.4. RADIOACTIVITY 
 1.4.4. Production of radionuclides (nuclear activation)  
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 Nucleons are bound together to form nucleus by strong 
nuclear force 
 

• At least two orders of magnitude larger than proton–proton 
Coulomb repulsive force 

• Extremely short range (a few femtometres) 
 

 A delicate equilibrium between number of protons and 
number of neutrons must exist to bind the nucleons into a 
stable nucleus 
 

• Configurations to form stable nuclei 
• For low A nuclei  Z = N 
• For A ≥ 40  N > Z (in order to overcome proton-proton Coulomb 

repulsion) 
 

1.4. RADIOACTIVITY 
  1.4.5. Modes of radioactive decay  
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 If there is no proton-neutron optimal equilibrium: 
 
 

• Nucleus is unstable (radioactive) 
 

• Nucleus decays with a specific decay constant λ into more stable 
configuration that may also be unstable and decay further, forming a 
decay chain that eventually ends with a stable nuclide  

 

    

Nuclear Medicine Physics:  A Handbook for Teachers and Students – Chapter 1 –  

1.4. RADIOACTIVITY 
  1.4.5. Modes of radioactive decay  

Slide 44/101 

 



IAEA 

 Radioactive decay is a process by which unstable 
(radioactive) nuclei reach a more stable configuration  

 

 Radioactive decay processes  
• Medically important 

• Alpha (α) decay 
• Beta (β) decay 

• Beta plus decay 
• Beta minus decay 
• Electron capture 

• Gamma (γ) decay 
• Pure gamma decay 
• Internal conversion 

• Less important 
• Spontaneous fission 

. 
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 Neutron-rich nuclides have excess number of neutrons  
 

 Proton-rich nuclides have excess number of protons  
 

 Decays: 
 

• Slight Proton–neutron imbalance: 
• Proton into a neutron in β+ decay 
• Neutron into a proton in β– decay 

• Large proton–neutron imbalance:  
• α particles in α decay OR protons in proton emission decay 
• Neutrons in neutron emission decay  

• Very large A nuclides (A > 230) 
• Spontaneous fission competing with α decay 
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 Excited nuclei decay to ground state via γ decay 
 

• Most of these occur immediately upon excited state production by α 
or β decay 
 

• A few have delayed decays governed by their own decay constants  
• Referred to as metastable states (e.g. 99mTc) 
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 Nuclear transformations are usually accompanied by 
emission of energetic particles (charged particles, neutral 
particles, photons, neutrinos) 
 

 Radioactive decay  Emitted particles 
• Alpha decay   α particle   
• Beta plus decay   β+ particle (positron), neutrino 
• Beta minus decay   β−  particle (electron), antineutrino 
• Electron capture   Neutrino 
• Pure gamma decay  Photon 
• Internal conversion   Orbital electron 
• Spontaneous fission  Fission products, neutrons, heavier nuclei  
• Neutron emission decay Neutron 
• Proton emission decay Proton 
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 In each nuclear transformation a number of physical 
quantities must be conserved 
 

 The most important conserved physical quantities are: 
• Total energy 
• Momentum 
• Charge 
• Atomic number 
• Atomic mass number (number of nucleons) 
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 Total energy of particles released by the transformation process 
is equal to the net decrease in the rest energy of the neutral 
atom, from parent P to daughter D 
 

 Decay energy (Q value) is given as: 
 

   
 M(P), M(D), and m are the nuclear rest masses of the parent, daughter 

and emitted particles, respectively (in unified atomic mass units u)  
 

 Radioactive decay energetically possible if Q > 0, thus 
• Spontaneous radioactive decay processes are exoergic or exothermic 
• Energy equivalent of Q is shared as EK between emitted particles & the 

daughter product 
• Usually M(D) >> m  EK of daughter usually negligibly small 

 

     

[ ]{ } 2(P) (D)Q M M m c= − + ⋅
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 Alpha decay is a nuclear transformation in which: 
• Energetic α particle, 4He nucleus (4He2+) is emitted 
• Atomic number Z of the parent decreases by 2 
• Atomic mass number A of the parent decreases by 4 

 
 

 Naturally occurring α’s  
• EK : 4-9 MeV 
• Range in air: 1-10 cm 
• Range in tissue:  10 - 100 µm 
 

 Examples: 

1.4. RADIOACTIVITY 
  1.4.6. Alpha decay  

αDHeDP 4
2

24
2

4
2 +=+→ −

−
+−

−
A
Z

A
Z

A
Z

1/2

1/2

226 222
88 861602y

222 218
86 843.82d

Ra Rn α

Rn Po α
T

T

=

=

→ +

→ +
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 Beta minus (β−) decay : 
• Neutron-rich parent nucleus P  

• Transforms neutron into proton:  
• Ejects e− & antineutrino, which share available energy 

• ZD = ZP + 1  
• AD = AP  

• Daughter D isobar of parent P 
 
 
 

• Example of β− decay 
 

1.4. RADIOACTIVITY 
 1.4.7. Beta minus decay  

     

1 eP D eA A
Z Z

−
+→ + + ν

en p e−→ + + ν
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 Beta plus (β+) decay: 
 

• Proton-rich parent nucleus P  
• transforms a proton into a neutron 

 
 
 

• Ejects e+ & νe, which share available energy 
 

• ZD = ZP – 1  
• AD = AP  

• Daughter D isobar of parent P 

1.4. RADIOACTIVITY 
 1.4.8. Beta plus decay  

     

1 eP  D e νA A
Z Z

+
−→ + +

eνenp ++→ +

Nuclear Medicine Physics:  A Handbook for Teachers and Students – Chapter 1 –  Slide 53/101 

 



IAEA 

1.4. RADIOACTIVITY 
 1.4.8. Beta plus decay  

     

 Radionuclides undergoing β+ decay often called positron 
emitters  
 

• Used in medicine for PET functional imaging 
• Most common PET tracer is fluorodeoxyglucose (FDG) labelled 

with 18F 
 

 Example of β+ decay 

e
18

8min110
18
9 νeOF

2/1
++ → +

=T
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 Electron capture is a nuclear transformation in which: 
• Nucleus captures an atomic orbital electron (usually K shell) 

 
 

• ZD = ZP - 1  
• AD = AP  

• Daughter D isobar of parent P 
 

 Example of e− capture 

• 125Te* is the excited state of 125Te  

• decays to 125Te ground state by γ decay & internal conversion 
 

1.4. RADIOACTIVITY 
  1.4.9. Electron capture  

     

eνnep +=+ −

1 eP e  D νA A
Z Z

−
−+ → +
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 α, β−, β+ and electron capture, may produce daughter (D) 
nucleus in excited state  
 

• Full amount of the decay energy available not expended 
• Will reach ground (de-excite) state by: 

• Emitting excitation energy as one or more γ 
• Internal conversion 

• Transfer of excitation energy to atomic orbital electrons (usually 
K shell) 

• Vacancy in shell filled by higher orbital electron 
• Resulting in characteristic X rays and/or Auger electrons 

1.4. RADIOACTIVITY 
  1.4.10. Gamma decay and internal conversion  

     

Nuclear Medicine Physics:  A Handbook for Teachers and Students – Chapter 1 –  Slide 56/101 

 



IAEA 

 In most α & β decays de-excitation is instantaneous 
 

• Thus, we refer to emitted γ's as if produced by parent 
• e.g. 60Co γ rays 

 

 Sometimes, D de-excites with time delay 
 

• Excited state of D is referred to as a metastable state  
• De-excitation called isomeric transition 
• e.g. 99mTc  
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 γ decay 
 
 
 

•         = excited stated of 
 

Example: 
 
 
 
 
• Where Eγ1=1.17 MeV & E γ2=1.33MeV 

 
 
 
 
 

 

 

*X  X γA A
Z Z→ +

*XA
Z XA

Z

60 60 *
27 28 e
60 * 60
28 28 1 2

Co Ni e

Ni Ni γ γ

−→ + + ν

→ + +
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 Internal conversion 
 
 
 

•         = singly ionized state of 
 

• Example: 

*X  X e XA A A
Z Z Z

+ −→ + →

+XA
Z XA

Z

125 125 *
53 52 e

125 * 125
52 52

125 * 125
52 52

I e  Te ν

Te  Te γ (7%)

or    Te  Te e (internal conversion 93%)

−

−

+ → +

→ +

→ +
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 A large number of radionuclides used in nuclear medicine 
(e.g. 99mTc, 123I, 201Tl, 64Cu) decay by electron capture 
and/or internal conversion  
 

 Both processes leave the atom with a vacancy in an inner 
atomic shell 
• Most commonly the K shell 
• Inner shell vacancy filled by electron from higher level atomic shell 
• Binding energy difference between the two shells is emitted as 

• Characteristic X ray (fluorescence photon)  
• Or transferred to higher shell orbital electron  

• Then emitted from atom as Auger electron with EK equal to 
transferred energy minus the binding energy of the emitted 
Auger electron  

1.4. RADIOACTIVITY 
 1.4.11 Characteristic (fluorescence) X rays and Auger electrons  
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 Energetic charged particles (e.g. e− or e+) undergo 
Coulomb interactions with absorber atoms, i.e., with: 
 

•  Atomic orbital electrons 
• Ionization loss 

•  Atomic nuclei 
• Radiation loss 

 

 Through these collisions the electrons may: 
 

• Lose their kinetic energy (collision and radiation loss) 
• Change direction of motion (scattering) 

 

 

1.5. ELECTRON INTERACTIONS WITH MATTER 
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 Interactions between the charged particle and absorber 
atom is characterized by a specific cross-section 
(probability) σ 
 

 Energy loss depends on  
 

• Particle properties (mass, charge, velocity & energy) 
 

• Absorber properties (density & Z) 
 

1.5. ELECTRON INTERACTIONS WITH MATTER 
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 Gradual loss of energy of charged particle described by 
stopping power  
 

 Two classes of stopping power known 
• Collision stopping power scol from interaction with orbital electrons of 

absorber  
• Radiation stopping power srad from interaction with nuclei of absorber 

 

 Total stopping power: stot = scol + srad  
 

 

1.5. ELECTRON INTERACTIONS WITH MATTER 
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1.5. ELECTRON INTERACTIONS WITH MATTER 
  1.5.1. Electron–orbital interactions 

 Inelastic collisions between the incident electron and an 
orbital electron are Coulomb interactions that result in: 
 

• Atomic ionization: 
• Ejection of the orbital electron from the absorber atom 
• Absorber atom becomes ion 

• Atomic excitation: 
• Transfer of an atomic orbital electron from one allowed orbit (shell) 

to a higher level allowed orbit 
• Absorber atom becomes excited atom 

 

 Atomic excitations & ionizations result in collision energy 
losses and are characterized by collision (ionization) 
stopping power 
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1.5. ELECTRON INTERACTIONS WITH MATTER 
 1.5.2. Electron–nucleus interactions 

 Coulomb interaction between the incident electron and an 
absorber nucleus results in: 
 
• Electron scattering and no energy loss (elastic collision): 

characterized by angular scattering power 
 

• Electron scattering and some loss of kinetic energy in the form of 
bremsstrahlung (radiation loss): characterized by radiation stopping 
power 
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1.6. PHOTON INTERACTIONS WITH MATTER 
  1.6.1. Exponential absorption of photon beam in absorber 

 The most important parameter used for characterization of 
X or γ ray penetration into absorbing media is the linear 
attenuation coefficient µ 
 

  Linear attenuation coefficient µ depends on: 
• Energy hν of photon 
• Z of the absorber 

 

 Linear attenuation coefficient may be described as the 
probability per unit path length that a photon will have an 
interaction with the absorber  
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 Attenuation coefficient, µ, is determined experimentally by: 
 

• Aiming narrowly collimated mono-energetic photon beam (E = hν) 
• Placing absorber material of varying thicknesses x between photon 

source and detector  
• x represents total thickness of the absorber  

• Measuring beam intensity I(x) in radiation  
detector 
 

 As x increases, detector signal intensity  
decreases   
• From I(x=0) measured with no absorber  
• To I(x) measured with absorber of thickness x > 0 
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 An absorber of thickness dx reduces beam intensity by 
dI(x)  
• Fractional intensity reduction, −dI(x)/I(x) is proportional to: 

• Attenuation coefficient µ  
• Layer thickness dx  

 

 
 

 
• the negative sign indicates a decrease in signal I(x) with an increase 

in absorber thickness x 

x
xI
xI d
)(
)(d µ=−
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 Integrate over  
• absorber thickness x from 0  x  
• over intensity I(x) from I(0) I(x) 

 
 
 

 Resulting in: 
 
• Assuming µ is : 

• uniform in the absorber  
• independent of x 

 

∫∫ −=
xxI

I

x
xI
xI

0

)(

)0(

d
)(
)(d µ

xIxI µ−= e)0()(
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1.6. PHOTON INTERACTIONS WITH MATTER 
  1.6.2. Characteristic absorber thicknesses  

    

 3 special thicknesses used for characterization of photon 
beams:  
 

• Half-value layer (HVL or x1/2) 
• Absorber thickness that attenuates original I(x) by 50 % 

 

• Mean free path (MFP or    )  
• Absorber thickness which attenuates beam intensity by 1/e = 36.8% 

 

• Tenth-value layer (TVL or x1/10) 
• Absorber thickness which attenuates beam intensity to 10% of 

original intensity 

x
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 HVL 
 
 
 

 MFP 
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1.6. PHOTON INTERACTIONS WITH MATTER 
  1.6.3. Attenuation coefficients  

 In addition to the linear attenuation coefficient µ, other related 
attenuation coefficients and cross sections are used for 
describing photon beam attenuation: 
• Mass attenuation coefficient:  µm 

• Atomic cross section:   aµ 
• Electronic cross section:   eµ 

 

 The attenuation coefficients are related by: 
 
 

 

•  absorber mass density 
•   atoms Na per volume V of absorber 
• m  absorber mass  
• NA  Avogadro’s number 
•   electrons per unit volume of absorber 

 

m a en Znµ ρµ µ µ= = =  a a aN N Nn
V m A

ρ ρ= = =

ANZn Z
A

ρ=
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 Energy transfer coefficient 
 
•       = mean energy transferred from photons to charged particles 

(e− and e+) per unit path length. 
• hν = primary photon energy 

 

 Energy absorption coefficient 
 
•        = Mean energy absorbed in medium per unit path length 

• In the literature, µen is often used instead of µab 

tr
tr

E
h

µ µ
ν

=

trE

ab
ab

E
hν

µ µ=

abE
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 Light charged particles (e− & e+) released/produced in 
absorbing medium through various photon interactions will 
either:  
 
• Deposit energy to medium via Coulomb interactions w/ orbital 

electrons of absorbing medium (collision loss also referred to as 
ionization loss) 
 

• Radiate EK away as photons through Coulomb interactions with 
nuclei of absorbing medium (radiation loss) 
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 Typical examples mass attenuation 
coefficient µ/ρ plotted vs hν  
 

 Observations for C  (low Z absorber) & 
Pb (high Z absorber) for energy range: 
0.001 - 1000 MeV 
• intermediate photon energies (~1 MeV) 

• Have similar µ/ρ  0.1 cm2/g  
• For low photon energies 

• Pb µ/ρ >> C µ/ρ  
• at energies > 10 MeV 

• C µ/ρ essentially flat  
• Pb µ/ρ of lead increases with energy 
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1.6. PHOTON INTERACTIONS WITH MATTER 
  1.6.4. Photon interactions on the microscopic scale 

     

 Photons may experience various interactions with absorber 
atoms involving either of the following:  
 

• Absorber nuclei  
• Photonuclear reaction: direct photon - nucleus interactions 
• Nuclear pair production: photon - electrostatic field of the nucleus 

interactions 
 

• Orbital electrons of absorbing medium:  
• Compton effect, triplet production: photon - loosely bound electron 

interactions 
• Photoelectric effect, Rayleigh scattering: photon - tightly bound 

electron interactions 
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 Loosely bound electron  
 

• Binding energy EB << Eγ = hν  
• Interactions considered to be between photon and ‘free’ (i.e. 

unbound) electron 
 

 Tightly bound electron  
 

• EB comparable to, larger than or slightly smaller than Eγ = hν  
• Interactions occur if EB must be of the order of, but slightly smaller 

than Eγ = hν 
• i.e. EB ≤ hν 

• Interactions considered to be between photon and atom as a whole 
 

Nuclear Medicine Physics:  A Handbook for Teachers and Students – Chapter 1 –  

1.6. PHOTON INTERACTIONS WITH MATTER 
  1.6.4. Photon interactions on the microscopic scale 

Slide 77/101 

 



IAEA 

 Two possible outcomes for photon after interaction with 
atom 
 

• Photon disappears and is absorbed completely  
• Photoelectric effect 
• Nuclear pair production 
• Triplet production 
• Photonuclear reaction 

 

• Photon scattered and changes direction but keeps its energy 
(Rayleigh scattering) or loses part of its energy (Compton effect) 
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 The most important photon interactions with atoms of the 
absorber are 
• Those with energetic electrons released from absorber atoms (and 

electronic vacancies left): 
• Compton effect 
• Photoelectric effect 
• Electronic pair production (triplet production) 

• Those with portion of the incident photon energy used to produce free 
electrons and positrons 
• Nuclear pair production 
• Photonuclear reactions 

 

 All these light charged particles move through the absorber 
and either  
• Deposit EK in the absorber (dose)  
• Transform part EK into radiation bremsstrahlung radiation 
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 Electronic vacancies from photon interactions with 
absorber atoms  
 

• e− from higher shell fills lower shell vacancy 
 

• Transition energy emitted as one of the following: 
• Characteristic X ray (also called fluorescence photon) 
• Auger electron  
• This process continues until the vacancy migrates to the outer 

shell of the absorber atom 
• Free e− from environment eventually fills outer shell vacancy  
• Absorber ion reverts to neutral atom in ground state 
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 Auger effect: Auger e− emissions from excited atom  
 
• Each Auger transition converts 1 vacancy into 2 vacancies 

 
• Leads to cascade of low energy Auger e−'s emitted from atom 

 
• Auger e−'s have very short range in tissue  

 
• May produce ionization densities comparable to those in an 

alpha track 

• Biologically damaging 
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 Branching between characteristic γ and Auger e− governed 
by fluorescence yield ω  
• ω  = number of fluorescence γ's emitted per vacancy in given shell 
• ω  also defined as probability of emission of fluorescence photon for 

a given shell vacancy 
• (1 – ω) gives probability of emission of Auger e−  for given shell 

vacancy 
 

Nuclear Medicine Physics:  A Handbook for Teachers and Students – Chapter 1 –  

1.6. PHOTON INTERACTIONS WITH MATTER 
  1.6.4. Photon interactions on the microscopic scale 

Slide 82/101 

   



IAEA 

 Photoelectric effect: 
 

• Only happens if photon energy Eγ = hν > EB 

• Higher probability of happening when hν is closer to EB 
• γ  interacts with tightly bound electron, i.e. with whole atom 
• Photon disappears 
• Orbital electron ejected from atom as a photoelectron  
• Ejected electron has kinetic energy EK 

 
 
 
 

• hν  = incident photon energy  
• EB  = binding energy of photoelectron 

K Bν= −E h E
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1.6. PHOTON INTERACTIONS WITH MATTER 
  1.6.5. Photoelectric effect 

     

 Schematic diagram of the photoelectric effect 
• A photon interacts with an orbital electron 
• Electron is emitted from the atom as a photoelectron 
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 Photoelectric mass attenuation 
coefficient τ/ρ plotted for C & Pb  
(component of total attenuation 
coefficient µ/ρ ) 

 
• Absorption edges: 

• Sharp discontinuities when hν = EB 
of a given shell 

• e.g., K absorption edge  
• For Pb: EB = 88 keV  
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 Photoelectric atomic attenuation 
coefficients 
• Atomic: aτ ~Z5/(hν)3 
• Mass: τm =τ/ρ ~Z4/(hν)3 

 Photoelectric effect is the major 
contributor to µ/ρ at 
• Relatively low Eγ = hν ~ EB for K-shell  
• Eγ < 0.1 MeV  

 At higher energies, major 
contributors to µ/ρ are 
• Compton effect (Eγ ~ 1MeV) 
• Pair production (Eγ > 10MeV) 
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1.6. PHOTON INTERACTIONS WITH MATTER 
  1.6.6. Rayleigh (coherent) scattering 

    

 Rayleigh (coherent) scattering 
• In coherent (Rayleigh) scattering the photon interacts with the full 

compliment of tightly bound atomic orbital electrons of the absorber 
atom 

• Elastic 
• Photon loses essentially none of its energy hν  
• Photon scattered through only a small angle θ 
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 Rayleigh (coherent) scattering 
• Contributes µ/ρ through elastic scattering process 
• Rayleigh atomic attenuation coefficient 

• aσR  ~  Z2/(hν)2 

• Rayleigh mass attenuation coefficient 
• σR /ρ ~  Z/(hν)2 

 

 Not important in radiation dosimetry because there’s no 
energy transfer from photons to charged particles in the 
absorber 
 

 Amounts to only a few per cent of the total µ/ρ, but should 
not be neglected in attenuation calculations 
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1.6. PHOTON INTERACTIONS WITH MATTER 
  1.6.7. Compton effect ("incoherent scattering") 

     

 Compton effect ("incoherent scattering" or "Compton 
scattering") 
 

• Interaction between γ with Eγ = hν  and a loosely bound (“free”)  e− 
• ‘free’ because Eγ  >> EB , i.e. loosely bound means essentially 

‘free & stationary’ 
 
 

 Part of incident Eγ = hν  transferred to “free” orbital electron 
which is emitted from the atom as the Compton (recoil) 
electron 
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 Photon is scattered through scattering angle θ  & its 
energy E'γ = hν' is lower than Eγ = hν  (incident photon 
energy) 

 Angle φ represents the angle between the incident γ  
direction and the Compton e− direction  
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 Conservation of energy 
 
 
 
 

 Conservation of momentum (x axis) 
 
 
 

 
 Conservation of momentum (y axis) 
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where 
mec2  rest energy of electron (0.511 MeV) 
EK     kinetic energy of recoil (Compton) electron 
υ       velocity of recoil (Compton) electron 
c  speed of light in a vacuum (3×108 m/s) 
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 Basic Compton equation (also referred to as the Compton 
wavelength-shift equation) follows from conservation of 
energy & momentum: 
 

  
 
 
 
 λ  =  wavelength of the incident photon (c/ν ) 
 λ'  =  wavelength of the scattered photon (c/ν') 
 Δλ =  wavelength shift in Compton effect (λ' – λ) 
 λC  = Compton wavelength of the electron = 0.024Å 
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 Relationship between the scattered Eγ & incident Eγ is:  
 
 
 

 Relationship between the EK of recoil electron & incident Eγ 
is: 
 
 
 

 Scattering θ & recoil φ angles are related as: 
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  Energy of: 
• forward scattered photons (θ = 0) 

 
• side-scattered photons (θ = π / 2)  

 

• back-scattered photons (θ = π) 
  
  For hν → ∞  

•  θ = 0 
 

•  θ = π / 2 
 

•  θ = π        
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       (Compton electronic attenuation coefficient) 
• Steadily decreases with increasing hν  

• Theoretical value = 0.665 × 10–24 cm2/electron (Thomson cross-
section) at low Eγ 

• 0.21 × 10–24 cm2/electron at hν = 1 MeV 
• 0.51 × 10–24 cm2/electron at hν = 10 MeV 
• 0.008 ×10–24 cm2/electron at hν = 100 MeV 

• Independent of Z 
• For C(Z = 6) and Pb(Z = 82) at Eγ ~1 MeV, where Compton effect 

predominates, both are   0.1 cm2/electron irrespective of Z 

  (Compton  atomic attenuation coefficient ) 
• Depends linearly on absorber Z (because Compton interaction is 

with free electron) 

    

a Cσ

e Cσ
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 Compton maximum energy transfer fraction (fC)max : 
• Maximum energy transfer to recoil electron occurs when photon is 

back-scattered (θ = π)        
       
 

 Mean energy transferred to the Compton electron 
normalized by hν  
• Very important in radiation dosimetry  
• fractional energy,     , transfer to recoil  

electrons is  
•     = 0.02 at hν = 0.01 MeV 
• Rises and then reaches 1   

asymptotically at very high hν 
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  1.6.8. Pair production  

    

 Pair production 
• Production of  e− - e+ pair + complete absorption of incident photon 

by absorber atom 
• Happens if : Eγ = hν > 2mec2 = 1.022 MeV, with mec2 = rest energy of 

e− & e+  

 Conserves:  
• Energy 
• Charge  
• Momentum 
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 Two types of pair production are known:  
 

• Nuclear pair production  
• Collision partner is absorber atomic nucleus  
• Characterized by: Eγ > 2mec2 = 1.022 MeV 

 
 

• Electronic pair production or triplet 
production  
• Less probable 
• Pair production in Coulomb field of 

absorber orbital electron 
• Threshold: Eγ > 4mec2 = 2.044 MeV 
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 Pair production attenuation coefficients 
 

• Usually as one parameter for nuclear & electronic  
• Nuclear pair production contributes > 90% 
• Pair production atomic attenuation coefficient  aκ 

• aκ ~ Z2 
• Pair production mass attenuation coefficient  κ/ρ   

• κ/ρ ~ Z 
 

 Pair production probability  
 

• Zero for Eγ < 2mec2 = 1.022 MeV  
• Increases rapidly with Eγ  > threshold 
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 The probability for a photon to undergo any one of the 
various interactions absorber depends on: 
• Photon energy hν  
• Absorber Z  
• Pair production at high Eγ 

• Photoelectric effect generally predominates at low Eγ 

• Compton effect generally predominates at intermediate Eγ 
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1.6. PHOTON INTERACTIONS WITH MATTER 
  1.6.10. Macroscopic attenuation coefficients 

     

 For a given hν  & Z: 
• Linear attenuation coefficient µ 
• Linear energy transfer coefficient µtr 

• Linear energy absorption coefficient µab (often designated µen) 
 are given as a sum of coefficients for individual photon interactions 
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