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5.1. sources of error iN Nuclear MediciNe MeasureMeNT

Measurement errors are of three general types: (i) blunders, (ii) systematic 
errors or accuracy of measurements, and (iii) random errors or precision of 
measurements.

blunders produce grossly inaccurate results and experienced observers 
easily detect their occurrence. examples in radiation counting or measurements 
include the incorrect setting of the energy window, counting heavily contaminated 
samples, using contaminated detectors for imaging or counting, obtaining 
measurements of high activities, resulting in count rates that lead to excessive 
dead time effects, and selecting the wrong patient orientation during imaging. 
although some blunders can be detected as outliers or by duplicate samples and 
measurements, blunders should be avoided by careful, meticulous and dedicated 
work. This is especially important where results will determine the diagnosis or 
treatment of patients.

systematic errors produce results that differ consistently from the correct 
results by some fixed amount. The same result may be obtained in repeated 
measurements, but overestimating or underestimating the true value. systematic 
errors are said to influence the accuracy of measurements. Measurement results 
having systematic errors will be inaccurate or biased. examples of a systematic 
error are:

 — When an incorrectly calibrated ionization chamber is used for measurement 
of radiation dose.

 — When during thyroid uptake studies with 123i the count rate of the reference 
standard results in dead time losses. The percentage of thyroid uptake will 
be overestimated.

 — When in sample counting the geometry of samples and the position within 
the detector are not the same as in the reference sample.
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 — When during blood volume measurements the tracer leaks out of the blood 
compartment. The theory of the method assumes that the tracer will stay 
in the blood compartment. The leaking of the tracer will consistently 
overestimate the measured blood volume. 

 — When in calculation of the ventricular ejection fraction during gated 
blood pool studies the selected background counts underestimate the true 
ventricular background counts, the ejection fraction will be consistently 
underestimated. 

Measurement results affected by systematic errors are not always easy to 
detect, since the measurements may not be too different from the expected results. 
systematic errors can be detected by using reference standards. for example, 
radionuclide standards calibrated at a reference laboratory should be used to 
calibrate source calibrators to determine correction factors for each radionuclide 
used for patient treatment and diagnosis.

Measurement results affected by systematic errors can differ from the true 
value by a constant value and/or by a fraction. using ‘golden standard’ reference 
values, a regression curve can be calculated. The regression curve can be used to 
convert systematic errors to a more accurate value. for example, if the ejection 
fraction is determined by a radionuclide gated study, it can be correlated with the 
‘golden standard’ values. 

random errors are variations in results from one measurement to the next, 
arising from actual random variation of the measured quantity itself, as well as 
physical limitations of the measurement system. 

random error affects the reproducibility, precision or uncertainty in the 
measurement. random errors are always present when radiation measurements 
are performed because the measured quantity, namely the radionuclide decay, 
is a random varying quantity. The random error during radiation measurements 
introduced by the measured quantity, that is the radionuclide decay, is 
demonstrated in fig. 5.1. figure 5.1 shows the energy spectrum of a 57co source 
in a scattering medium and measured with a scintillation detector probe. The 
energy spectrum represented by square markers is the measured energy spectrum 
with random noise due to radionuclide decay. The solid line spectrum represents 
the energy spectrum without random noise. The variation around the solid line of 
the data points, represented by markers, is a result of random error introduced by 
radionuclide decay. 

The influence of the random error of the measurement system introduced 
by the scintillation detector is also demonstrated in fig. 5.1. cobalt-57 emits 
photons of 122 keV and with a perfect detection system all of the counts are 
expected at 122 keV. The measurements are, however, spread around 122 keV 
as a result of the random error introduced by the scintillation detector during the 
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detection of each γ photon. When a γ photon is detected with the scintillation 
detector, the number of charge carriers generated will vary randomly. The varying 
number of charge carriers will cause varying pulse heights at the output of the 
detector and this variation determines the spread around the true photon energy 
of 122 keV. The width of the photopeak determines the energy resolution of the 
detection system.

FIG. 5.1.  Energy spectrum of a 57Co source in a scattering medium obtained with a 
scintillation detector. 

random errors also play a significant role in radionuclide imaging. here, 
the random error as a result of the measured quantity, namely radionuclide decay, 
will significantly influence the visual quality of the image. This is because the 
number of counts acquired in each pixel is subject to random error. it is shown that 
the relative random error decreases as the number of counts per pixel increases. 
The visual effect of the random error as a result of the measured quantity is 
demonstrated in fig. 5.2. Technetium-99m planar bone scans (acquired on a 
256 × 256 matrix) were acquired with a scintillation camera. image acquisition 
was terminated at a total count of 21, 87 and 748 kcounts. When the total number 
of counts per image are increased, the counts per pixel increase and the random 
error decreases, resulting in improved visual image quality. as the accumulated 
counts are increased, the ability to visualize anatomical structures and, more 
importantly, tumour volumes, significantly increases. The random error 
introduced by the measuring system or imaging device, such as a scintillation 
camera, also influences image quality. This is as a result of the energy resolution 
and intrinsic spatial resolution of imaging devices that are influenced by random 
errors during the detection of each γ photon. The energy resolution of the system 
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will determine the ability of the system to reject lower energy scattered γ photons 
and improve image contrast. 

FIG. 5.2.  The influence of random error as a result of radionuclide decay or counting statistics 
is demonstrated for imaging. Technetium-99m posterior planar bone images (256 × 256) using 
a scintillation camera were acquired to total counts of 21, 87 and 748 kcounts. 

it is possible for a measurement to be precise (small random error) but 
inaccurate (large systematic error), or vice versa. for example, for the calculation 
of the ejection fraction during gated cardiac studies, the selection of the 
background region of interest (roi) will be exactly reproducible when a software 
algorithm is used. however, if the algorithm is such that the selected roi does 
not reflect the true ventricular background, the measurement will be precise but 
inaccurate. conversely, individual radiation counts of a radioactive sample may 
be imprecise because of the random error, but the average value of a number of 
measurements will be accurate, representing the true counts acquired.

random errors are always present and play a significant role in radiation 
counting and imaging. it is, therefore, important to analyse the random errors to 
determine the associated uncertainty. This is done using methods of statistical 
analysis. The remainder of the chapter describes methods of analysis. 

The analysis of radiation measurements and imaging forms a subgroup 
of general statistical analysis. in this chapter, the focus is on statistical analysis 
for radiation counting and imaging measurements, although some methods 
described will be applicable to a wider class of experimental data as described in 
sections 5.2, 5.3 and 5.5.
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5.2. characTeriZaTioN of daTa

5.2.1. Measures of central tendency and variability

5.2.1.1. Dataset as a list

Two measurements of the central tendency of a set of measurements are 
the mean (average) and median. it is assumed that there is a list of N independent 
measurements of the same physical quantity: 

x1, x2, x3, ….xi……xN

it is supposed that the dataset is obtained from a long lived radioactive 
sample counted repeatedly under the same conditions with a properly operating 
counting system. as the disintegration rate of the radioactive sample undergoes 
random variations from one moment to the next, the number of counts recorded 
in successive measurements is not the same as the result of random errors in the 
measurement.

The experimental mean ex  of the set of measurements is defined as:
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The following procedure is followed to obtain the median. The list of 
measurements must first be sorted by size. The median is the middlemost 
measurement if the number of measurements is odd and is the average of the 
two middlemost measurements if the number of measurements is even. for 
example, to obtain the median of five measurements, 7, 13, 6, 10 and 14, they are 
first sorted by size: 6, 7, 10, 13 and 14. The median is 10. The advantage of the 
median over the mean is that the median is less affected by outliers. an outlier is 
a blunder and is much greater or much less than the others.

The measures of variability, random error and precision of a list of 
measurements are the variance, standard deviation and fractional standard 
deviation, respectively.
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The variance σe
2 is determined from a set of measurements by subtracting 

the mean from each measurement, squaring the difference, summing the squares 
and dividing by one less than the number of measurements:
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where N is the total number of measurements and ex  is the experimental mean.

The standard deviation σe is the square root of the variance:

2
e eσ σ=  (5.4)

The fractional standard deviation σef (fractional error or coefficient of 
variation) is the standard deviation divided by the mean:

e
eF

e

                                                                                                         (5.5)
x

σ
σ =  (5.5)

The fractional standard deviation is an important measure to evaluate 
variability in measurements of radioactivity. The inverse of the fractional 
standard deviation 1/σef in imaging is referred to as the signal to noise ratio.

5.2.1.2. Dataset as a relative frequency distribution function

it is often convenient to represent the dataset by a relative frequency 
distribution function F(x). The value of F(x) is the relative frequency with which 
the number appears in the collection of data in each bin. by definition:

number of occurrences of the value  in each bin
( )

number of measurements ( )
x

F x
N

=  (5.6)

The distribution is normalized, that is: 

0

( ) 1                                                                                                     (5.7)
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F x
∞
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=∑  (5.7)
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as long as the specific sequence of numbers is not important, the complete 
data distribution function represents all of the information in the original dataset 
in list format.

figure 5.3 illustrates a demonstration of the application of the relative 
frequency distribution. The scintillation counter measurements appear noisy due 
to the random error as a result of the measured quantity (the radionuclide decay) 
(fig. 5.3(a)). The measurements fluctuate randomly above and below the mean 
of 90 counts. a histogram (red bars) of the relative frequency distribution of 
the fluctuations in the measurements can be constructed by plotting the relative 
frequency of the measured counts (fig. 5.3(b)). The x axis represents the range of 
possible counts that were measured in each of the bins with a six count interval. 
The y axis represents the relative frequencies with which the particular count 
values occur. The most common value, that is 26% of the measurements, is near 
the mean of 90 counts. The values of the other measurements are substantially 
higher or lower than the mean. The measured frequency distribution histogram 
agrees well with the expected calculated normal distribution (blue curve). 

(a) Measured counts (b) Relative frequency distribution
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FIG. 5.3.  One thousand measurements were made with a scintillation counter. (a) The graph 
shows the variations observed for the first 50 measurements. (b) The graph (red bars) shows 
the histogram of the relative frequency distribution for the measurements as well as the 
expected calculated frequency distribution. 

The relative frequency distribution is a useful tool to provide a quick visual 
summary of the distribution of measurement values and can be used to identify 
outliers such as blunders or the correct functioning of equipment.
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Three measurements of the central tendency for a frequency distribution 
are the mean (average), median and mode:

 — The mode of a frequency distribution is defined as the most frequent value 
or the value at the maximum probability of the frequency distribution.

 — The median of a frequency distribution is the value at which the integral of 
the frequency distribution is 0.5; that is, half of the measurements will be 
smaller and half will be larger than the median. 

The experimental mean ex  using the frequency distribution function 
can be calculated. The experimental mean is obtained by calculating the first 
moment of the frequency distribution function. The equation for calculating the 
mean can also be derived from the equation for calculating the mean for data

in a list (eq. (5.2)). The sum of measurements 
1

N

i
i

x
=
∑  is equal to the sum of the

measurements in each ‘bin’ in the frequency distribution function. The sum of the 
measurements for each bin is obtained by multiplying the value of the bin i and 
the number of occurrences of the value xi.
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The experimental sample variance can be calculated using the frequency 
distribution function: 
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The standard deviation and the fractional standard deviation are given by 
eqs (5.4) and (5.5).

The frequency distribution provides information and insight on the 
precision of the experimental sample mean and of a single measurement. 
figure 5.3 demonstrates the distribution of counting measurements around the 
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true mean t( )x . The value of the true mean is not known but the experimental 
sample mean e( )x  can be used as an estimate of the true mean t( )x : 

t e( ) ( )                                                                                                       (5.10)x x≈  (5.10)

in routine practice, it is often impractical to obtain multiple measurements 
and one must be satisfied with only one measurement. This is especially the 
case during radionuclide imaging and nuclear measurements on patients. The 
frequency distribution of the measurements will determine the precision of a 
single measurement as an estimate of the true value. The probability that a single 
measurement will be close to the true mean depends on the relative width or 
dispersion of the frequency distribution curve. This is expressed by the variance 
σ2 (eq. (5.9)) or standard deviation σ of the distribution. The standard deviation σ 
is a number such that 68.3% of the measurement results fall within ±σ of the true 
mean tx .

Given the result of a given measurement x, it can be said that there is a 
68.3% chance that the measurement is within the range x ± σ. This is called the 
68.3% confidence interval for the true mean tx . There is 68.3% confidence that 

tx  is in the range x ± σ. other confidence intervals can be defined in terms of the 
standard deviation σ. They are summarized in Table 5.1. The 50% confidence 
interval (0.675σ) is referred to as the probable error of the true mean tx . 

Table 5.1.  coNfideNce leVels iN radiaTioN MeasureMeNTs

range confidence level for true mean tx

tx  ± 0.675σ 50.0

tx  ± 1.000σ 68.3

tx  ± 1.640σ 90.0

tx  ± 2.000σ 95.0

tx  ± 3.000σ 99.7

5.3. sTaTisTical Models

under certain conditions, the distribution function that will describe 
the results of many repetitions of a given measurement can be predicted. a 
measurement is defined as counting the number of successes x resulting from a 
given number of trials n. each trial is assumed to be a binary process in that only 
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two results are possible: the trial is either a success or not. it is further assumed 
that the probability of success p is constant for all trials.

To show how these conditions apply in real situations, Table 5.2 gives 
four separate examples. The third example gives the basis for counting nuclear 
radiation events. in this case, a trial consists of observing a given radioactive 
nucleus for a period of time t. The number of trials n is equivalent to the number 
of nuclei in the sample under observation, and the measurement consists of 
counting those nuclei that undergo decay. We identify the probability of success 
as p. for radioactive decay:

(1 e )tp −= −   (5.11)

where λ is the decay constant of the radionuclide.

The fifth example demonstrates the uncertainty associated with the energy 
determination during scintillation counting. The light photons generated in the 
scintillator following interaction with an incoming γ ray will eject electrons at the 
photocathode of the photomultiplier tube (PMT). Typically, one electron ejected 
for every five light photons results in a probability of success of 1/5.

Table 5.2.  eXaMPles of biNary Processes

Trial definition of success Probability of success p

Tossing a coin heads 1/2

rolling a die a six 1/6

observing a given radionuclide 
for time t

The nucleus decays during 
observation

( )1− −e lt

Observing a given γ ray over 
a distance x in an attenuating 
medium

The γ ray interacts with the 
medium during observation (1 e )xµ−−

observing light photons 
generated in a scintillator

an electron is ejected from the 
photocathode

1/5

5.3.1. Conditions when binomial, Poisson and 
normal distributions are applicable

Three statistical models are used: the binomial distribution, the Poisson 
distribution and the Gaussian or normal distribution. figure 5.4 shows the 
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distribution for the three models. The distributions were generated by using a 
Microsoft office excel spreadsheet.

5.3.1.1. Binomial distribution

This is the most general model and is widely applicable to all constant 
p processes (fig. 5.4). binomial distribution is rarely used in nuclear decay 
applications. one example in which the binomial distribution must be used is 
when a radionuclide with a very short half-life is counted with a high counting 
efficiency.

xx

xx

P(
x)

P(
x)

P(
x) P(
x)

px

px px

px

FIG. 5.4.  Probability distribution models for successful event probability p = 0.4 and 
p = 0.0001 for x = 10 and x  = 100, respectively. 

5.3.1.2. Poisson distribution

The model is a direct mathematical simplification of the binomial 
distribution under conditions that the event probability of success p is small 
(fig. 5.4). for nuclear counting, this condition implies that the chosen observation 
time is small compared to the half-life of the source, or that the detection 
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efficiency is low. The Poisson distribution is an important distribution. When 
the success rate is low, the true experimental distribution is asymmetric and a 
Poisson distribution must then be used since the normal distribution is always 
symmetrical. This is demonstrated in fig. 5.4 for p = 0.0001 and x  = 10.

5.3.1.3. Gaussian or normal distribution

The third important distribution is the normal or Gaussian, which is 
a further simplification if the mean number of successes x  is relatively large 
(>30). at this level of success, the experimental distribution will be symmetrical 
and can be represented by the Gaussian distribution (fig. 5.4). The Gaussian 
model is widely applicable to many applications in counting statistics.

it should be emphasized that the distribution of all of the above models 
becomes identical for processes with a small individual success probability p 
and with a large enough number of trials such that the expected mean number of 
successes x  is large. This is demonstrated in fig. 5.4 for p = 0.0001 and x  = 100.

5.3.2. Binomial distribution

 binomial distribution is the most general of the statistical models 
discussed. if n is the number of trials for which each trial has a success probability 
p, then the predicted probability of counting exactly x successes is given by:

!
( ) (1 )                                                                         (5.12)

( )! !
x n xn

P x p p
n x x

−= −
−

 (5.12)

P(x) is the predicted probability distribution function, and is defined only 
for integer values of n and x. The value of n! (n factorial) is the product of integers 
up to n, that is 1 × 2 × 3 ×………× n. The values of x! and (n – x)! are similarly 
calculated.

The properties of the binomial distribution are as follows:

 — The distribution is normalized:

0

( ) 1                                                                                                      (5.13)
n

x

P x
=

=∑  (5.13)

 — The mean value x of the distribution using eq. (5.8) is given by:

0

( )                                                                                                   (5.14)
n

x

x xP x
=

=∑  (5.14)
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if eq. (5.12) is substituted for P(x), the mean value x  of the distribution is 
given by:

                                                                                                            (5.15)x pn=  (5.15)

The sample variance for a set of experimental data has been defined by 
eq. (5.9). by analogy, the predicted variance σ2 is given by:

2 2

0

( ) ( )                                                                                       (5.16)
x

x x P xσ
∞

=

= −∑  (5.16)

if eq. (5.12) is substituted for P(x), the predicted variance σ2 of the 
distribution will be:

2 (1 )                                                                                                 (5.17)np pσ = −  (5.17)

if eq. (5.15) is substituted for np:

2 (1 )                                                                                                   (5.18)x pσ = −  (5.18)

The standard deviation σ is the square root of the predicted variance σ2:

(1 )  (1 )                                                                          (5.19)np p x pσ= − = −  (5.19)

The fractional standard deviation σf is given by:

F
(1 )  (1 )np p p
np np

σ
− −

= =

F
(1 )  (1 )

                                                                            (5.20) 
x p p

x x
σ

− −
= =  (5.20)

equation (5.19) predicts the amount of fluctuation inherent in a given 
binomial distribution in terms of the basic parameters, namely the number of 
trials n and the success probability p, where x pn= .

5.3.2.1. Application example of binomial distribution

The operation of a scintillation detector (section 6.4) is considered. it 
consists of a scintillation crystal mounted on a PMT in a light tight construction. 
Firstly, when a γ ray interacts with the crystal, it generates n light photons. 
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secondly, the light photons then eject x electrons from the photomultiplier 
photocathode. Thirdly, these electrons are then multiplied to form a pulse that 
can be further processed. For each γ ray that interacts with the scintillator, the 
number of light photons n, electrons ejected x and multiplication vary statistically 
during the detection of the different γ rays. This variation determines the energy 
resolution of the system. 

in this example, the second stage is illustrated, that is the ejection of 
electrons from the photocathode. The variation or the standard deviation and 
fractional standard deviation for the number of electrons x that are ejected can 
be calculated using the binomial distribution as is given by eqs (5.19) and (5.20). 

The typical values for a scintillation counter are as follows. it is assumed 
that the 142 keV γ rays emitted by 99mTc are being counted. it is further assumed 
that it uses 100 eV to generate a light photon in the scintillation crystal when a 
γ ray interacts with the crystal. Therefore, if all of the energy of a single 142 keV 
photon is absorbed, n = 142 000/100 = 1420 light photons will be emitted. it is 
assumed that these light photons fall on the photocathode of the PMT to generate 
x electrons for each γ ray absorbed. It is further assumed that five light photons 
are required to eject one electron.

for the binomial distribution, the probability of a light photon ejecting 
an electron is p = 1/5 and the number of trials n will be the number of light 
photons generated for each γ ray. This will be 1420. Equation (5.15) can be used 
to calculate the predicted mean number of electrons ejected for each γ ray:

1
  1420 284 electrons

5
x pn= = × =

The standard deviation (eq. (5.19)) and relative standard deviation 
(eq. (5.20)) can be calculated using the binomial distribution:

(1 ) 284(1 1 / 5) 15x p= − = − =σ

and

F
(1 ) (1 1 / 5)

0.053                                                                      (5.20)
284

p
x

σ
− −

= = =  (5.21)

Therefore, the contribution to the overall standard deviation at the electron 
ejection stage at the photocathode is 5.3%. The variation in the number of 
electrons will influence the pulse height obtained for each γ ray. The variation 
in the pulse height during the detection of γ rays will determine the width of the 
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photopeak (fig. 5.1) and the energy resolution of the system (sections 5.7.1 and 
6.4).

5.3.3. Poisson distribution

Many binary processes can be characterized by a low probability of 
success for each individual trial. This includes nuclear counting and imaging 
applications in which large numbers of radionuclides make up the sample or 
number of trials, but a relatively small fraction of these give rise to recorded 
counts. Similarly, during imaging, many γ rays are emitted by the administered 
imaging radionuclide, for every one that interacts with the tissue. in addition, 
during nuclear counting, many γ rays strike the detector for every single recorded 
interaction. 

under these conditions, the approximation that the probability p is small 
(p ≪ 1) will hold and some mathematical simplifications can be applied to the 
binomial distribution. The binomial distribution reduces to the form:

( ) e
( )                                                                                            (5.21)

!

x pnpn
P x

x

−
=   (5.22)

The relation pn x=  holds for this distribution as well as for the binomial 
distribution:

( ) e
( )                                                                                            (5.22)

!

x xx
P x

x

−
=  (5.23)

equation (5.23) is the form of the Poisson distribution.
for the calculation of binomial distribution, two parameters are required: 

the number of trials n and the individual success probability p. it is noted from 
eq. (5.23) that only one parameter, the mean value x , is required. This is a very 
useful simplification because using only the mean value of the distribution, all 
other values of the Poisson distribution can be calculated. This is of great help 
for processes in which the mean value can be measured or estimated, but for 
which there is no information about either the individual probability or size of the 
sample. This is the case in nuclear counting and imaging.

The properties of the Poisson distribution are as follows. The Poisson 
distribution is a normalized frequency distribution (see eqs (5.6) and (5.7)):

0

( ) 1
n

x

P x
=

=∑  (5.24)
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The mean value or first moment for the Poisson distribution is calculated 
by inserting the Poisson distribution (eq. (5.22)) into the equation to calculate the 
mean for a frequency distribution (eq. (5.8)):

0

( )                                                                                          (5.24)
x

x xP x pn
∞

=

= =∑  (5.25)

This is the same result as was obtained for the binomial distribution.
The predicted variance of the Poisson distribution differs from that of the 

binomial distribution and can be derived from eqs (5.9) and (5.22):

2 2

0

( ) ( )
x

x x P x pnσ
∞

=

= − =∑  (5.26)

from the result of eq. (5.26), the predicted variance is reduced to the 
important general equation:

2 xσ =  (5.27)

The predicted standard deviation is the square root of the predicted variance 
(eq. (5.4)):

2 xσ σ= =  (5.28)

The predicted standard deviation of any Poisson distribution is just the 
square root of the mean value that characterizes the same distribution.

The predicted fractional standard deviation σf (fractional error or coefficient 
of variation) is the standard deviation divided by the mean (eq. (5.5)):

F
1 1

x x

σ
σ

σ
= = =  (5.29)

The fractional standard deviation is the inverse of the square root of the 
mean value of the distribution.

equations (5.28) and (5.29) are important equations and frequently find 
application in nuclear detection and imaging.
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5.3.4. normal distribution

The Poisson distribution holds as a mathematical simplification to the 
binomial distribution within the limit p < 1. if, in addition, the mean value of the 
distribution is large (>30), additional simplification can generally be carried out 
which leads to a normal or Gaussian distribution:

2( )
21

( ) e
2

x x
xP x

x

 −     =


 (5.30)

The distribution function is only defined for integer values of x. 
figure 5.4 for x = 100 and p = 0.0001 demonstrates that for these values 

the normal distribution is identical to the Poisson and binomial distributions. The 
normal distribution is always symmetrical or ‘bell-shaped’ (fig. 5.4). it shares 
the following properties with the Poisson distribution:

 — it is normalized (see section 5.2.1.2 and eqs (5.6) and (5.7)):

0

( ) 1 
n

x

P x
=

=∑  (5.31)

 — The distribution is characterized by a single parameter   x pn= .
 — The predicted variance of the normal distribution is given by the mean of x:

2 xσ =  (5.32)

 — The predicted standard deviation is the square root of the predicted variance 
(eq. (5.4)):

2 xσ σ= =  (5.33)

 — The predicted fractional standard deviation σf (fractional error or coefficient 
of variation) is the standard deviation divided by the mean (eq. (5.5)):

F
1 1

x x
= = =



 (5.34)

The fractional standard deviation is the inverse of the square root of the 
mean value of the distribution.
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5.3.4.1. Continuous normal distribution: confidence intervals

in experiments where the sample size is small, there are only a few discrete 
outcomes. as the sample size increase, so does the number of possible sample 
outcomes. as the sample size approaches infinity, there is, in effect, a continuous 
distribution of outcomes. in addition, some random variables, such as height and 
weight, are essentially continuous and have continuous distributions. in these 
situations, the probability of a single event is not small as was assumed for the 
discrete Poisson and normal distributions, and the equation xσ=  does not 
apply. The continuous normal distribution is given by:

21
21

( ) e
2

x x

P x
 − −   = 

 
 (5.35)

The properties (fig. 5.5) of the continuous normal distribution are:

 — it is a continuous, symmetrical curve with both tails extending to infinity.
 — all three measures of central tendency, mean, median and mode, are 
identical.

 — it is described by two parameters: the arithmetic mean x  and the standard 
deviation σ. 
The mean x  determines the location of the centre of the curve and the 

standard deviation σ represents the spread around the mean. 

Number of standard deviations

P
(x

)

FIG. 5.5.  The continuous normal distribution indicating the probability levels at different 
standard deviations (SDs) from the mean. 
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FIG. 5.6.  Line source response curve obtained from a scintillation camera fitted to a normal 
distribution model. Image resolution is measured as the distance of the full width at half 
maximum (FWHM) of the percentage response. The standard deviation (SD) σ is the half width 
at a percentage response of 60.65%.

all continuous normal distributions have the property that between the 
mean and one standard deviation 68% is included on either side, between the 
mean and two standard deviations 95%, and between the mean and three standard 
deviations 99.7% of the total area under the curve.

5.3.4.2. Continuous normal distribution: applications in medical physics

The normal distribution is often used in radionuclide measurements and 
imaging to fit to experimental data. in this case, the equation is modified as 
follows:

21
2( ) 100e

x x

P x σ
 − −   =  (5.36)

where the maximum value of the distribution at   x is normalized to 100.

The spatial resolution of imaging devices such as scintillation cameras and 
positron emission tomography equipment is determined as the full width at half 
maximum (fWhM) response of a normal distribution fitted to a point or line 
spread function (fig. 5.6). The fWhM of the imaging device used in fig. 5.6 
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was 23.6 mm. The relation for a normal distribution between the fWhM and 
standard deviation σ can be derived by setting P(x) = 50 and solving eq. (5.36):

fWhM = 2.355σ (5.37)

for the imaging system used in fig. 5.6, the standard deviation σ = 10 mm. 
The value of the response P(x) is 60.65% at a distance of xσ=  (eq. (5.36)). 
The value of the standard deviation σ can, therefore, also be obtained from the 
measured percentage response curve by finding the x value at a percentage 
response of 60.65% (fig. 5.6).

in radionuclide energy spectroscopy, the photopeak distribution can be 
fitted to a normal distribution (fig. 5.1). The energy resolution of scintillation 
detectors is expressed as the fWhM of the photopeak distribution divided by 
the photopeak energy E. The energy spectrum in medical physics applications 
is measured in kiloelectronvolts or megaelectronvolts. The fractional energy 
resolution Re is:

E
FWHM 2.355

R
E E

σ
= =  (5.38)

5.4. esTiMaTioN of The PrecisioN of a siNGle 
MeasureMeNT iN saMPle couNTiNG aNd iMaGiNG

5.4.1. Assumption

a valuable application of counting statistics applies to the case in which 
only a single measurement of a particular quantity is available and the uncertainty 
associated with that measurement is required. The square root of the sample 
variance σ should be a measure of the deviation of any one measurement from 
the true mean value and will serve as an index of the degree of precision that 
should be associated with a measurement from that set. 

as only a single measurement is available, the sample variance cannot be 
calculated directly using eqs (5.3) or (5.9) and must be estimated by analogy 
with an appropriate statistical model. The appropriate theoretical distribution 
can be matched to the available data if the measurement has been drawn from 
a population whose theoretical distribution function is predicted by either a 
Poisson or Gaussian distribution. as the value of the single measurement x is the 
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only information available, it is assumed that the mean of the distribution is equal 
to the single measurement:

x x≈  (5.39)

having obtained an assumed value for x, the entire predicted probability 
distribution function P(x) is defined for all values of x. 

The expected sample variance s2 can be expressed in terms of the variance 
of the selected statistical model:

2 2s x xσ= = ≈  (5.40)

Therefore, the best estimate of the deviation σ from the true mean, which 
should typify a single measurement x, is given by:

s xσ= ≈  (5.41)

To illustrate the application of eq. (5.41), it is assumed that the probability 
distribution function is Gaussian with a large value for the measurement x. The 
range of values x ± σ or x x±  will contain the true mean with 68% probability. 

if it is assumed that there is a single measurement x = 100, then:

100 10xσ ≈ = =

in Table 5.3, the various options available in quoting the uncertainty to be 
associated with the single measurement are shown. The conventional choice is 
to quote the measurement x plus or minus the standard deviation σ or 100 ± 10. 
This interval is expected to contain the true mean x  with a probability of 68%. 
The probability that the true mean is included in the range can be increased by 
expanding the interval associated with the measurement as is shown in Table 5.3. 
for example, to achieve a 99% probability that the true mean is included, the 
interval must be expanded by 2.58σ. in the example, the range is then 100 ± 25.8. 

When errors are reported, the associated probability level should be stated 
in the report under methods.
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Table 5.3.  eXaMPles of error iNTerVals for a siNGle 
MeasureMeNT x = 100

interval 
(relative σ)

interval 
(values)

Probability that the true mean 
x  is included (%)

x ± 0.67σ 93.3–106.7 50

x ± 1.00σ 90.0–110.0 68

x ± 1.64σ 83.6–116.4 90

x ± 2.00σ 80.0–120.0 95

x ± 2.58σ 74.2–125.8 99

x ± 3.00σ 70.0–130.0 99.7

5.4.2. the importance of the fractional σF as an indicator of the precision 
of a single measurement in sample counting and imaging

The relation between the precision and a single counting measurement 
x is given by eq. (5.40). The precision, expressed as the standard deviation σ, 
will increase proportionally to the square root of the measurement x. Thus, if 
the value of the single measurement x increases, the standard deviation will 
also increase. The increase in the standard deviation will be smaller than that 
of the measurement x. The relation between the standard deviation and the 
single measurement is best demonstrated by calculating the relative or fractional 
standard deviation σf:

F
1x

x x x

σ
σ = = =  (5.42)

Thus, the recorded number of counts or the value of the single measurement 
x completely determines the relative precision. The relative precision decreases 
as the number of counts increases. Therefore, to achieve a required relative 
precision, a minimum number of counts must be accumulated. 

The following example illustrates the important relation between the 
relative precision and the number of counts recorded. if 100 counts are recorded, 
the relative standard deviation is 10%. if 10 000 counts are recorded, the relative 
standard deviation reduces to 1%. This example demonstrates the importance of 
acquiring enough counts to meet the required precision. 

it is easier to achieve the required precision when samples in counting tubes 
are measured than when in vivo measurements on patients are performed. The 
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single measurement from a high count rate radioactive sample in a counting tube 
will be obtained in a short time. however, if a low activity sample is measured, 
the measurement time will have to be increased to achieve the desired precision. 
The desired precision can be conveniently obtained by using automatic sample 
counters. These counters can be set to stop counting after a preset time or preset 
counts have been reached. by choosing the preset count option, the desired 
precision can be achieved for each sample. 

The acquisition time of in vivo measurements using collimated detector 
probes, such as thyroid iodine uptake studies or imaging studies, can often not 
be increased to achieve the desired precision as a result of patient movement. in 
these single measurements, high sensitivity radiation detectors or a higher, but 
acceptable radioactive dose, can be selected. 

The precision of a single measurement is very important during radionuclide 
imaging. if the number of counts acquired in a picture element or pixel is low, a 
low precision is obtained. There will then be a wide range of fluctuations between 
adjacent pixels. as a result of the poor quality of the images, it would only be 
possible to identify large defect volumes or defects with a high contrast. To detect 
a defect, the measured counts from the defect must lie outside the range of the 
background measurement plus or minus two standard deviations (x ± 2σ). during 
imaging, the number of counts measured in a target volume will be determined 
by the acquisition time, activity within the target volume and the sensitivity of 
the measuring equipment. The sensitivity of imaging equipment can be increased 
by increasing the fWhM spatial resolution. There is a trade-off between single 
sample counting precision and the spatial resolution of the imaging device to 
obtain images that would provide the maximum diagnostic value during visual 
interpretation of the images by nuclear medicine physicians. 

counting statistics are also very important during image quantification 
such as measuring renal function, left ventricular ejection fraction and tumour 
uptake. during quantification, the accumulated counts by an organ or within a 
target volume have to be accurately determined. in quantification studies, the 
background activity, attenuation and scatter contributions have to be corrected. 
These procedures further reduce the precision of quantification. 

5.4.3. Caution on the use of the estimate of the precision of a 
single measurement in sample counting and imaging 

all conclusions are based on the measurement of a counted number of 
success (number of heads in coin tossing). in nuclear measurements or imaging, 
the estimate of the precision of a single measurement by using xσ=  can only 
be applied if x represents a counted number of success, that is the number of 
events recorded in a given observation time. 
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The estimate of the precision of a single measurement by using xσ=  
cannot be used if x is not a directly measured count. for example, the association 
does not apply to:

 — counting rates;
 — sums or differences of counts;
 — averages of independent counts;
 — Pixel counts following tomographic image reconstruction;
 — any derived quantity.

in these cases, the quantity is calculated as a function of the number of 
counts recorded. The error to be associated with that quantity must be calculated 
according to the error propagation methods outlined in the next section. 

5.5. ProPaGaTioN of error

The preceding section described methods for estimating random error or 
the precision of a single measurement during nuclear measurements or imaging. 
Most procedures in nuclear medicine involve multiple nuclear measurements 
and imaging procedures for the calculation of results such as thyroid iodine 
uptake, ejection fraction, renal clearance, blood volume or red cell survival time, 
on which clinical diagnosis is based. similarly, internal dosimetry is performed 
using nuclear measurements and imaging data. To estimate the corresponding 
precision in the derived quantity, how the error associated with the initial 
measurements propagates through the calculations that were performed to arrive 
at the required result has to be followed. This is done by applying the error of 
propagation formulas. The variables used in the calculation of errors must be 
independent to avoid effects of correlation. it is assumed that the error in nuclear 
measurements arises only from random fluctuations in the decay rate and is 
statistically independent of other errors. 

The error of propagation formulas applies to measurements that are 
obtained from a continuous distribution as well as to Poisson and discrete 
normal distributions. The measurements from continuous distributions will be 
represented by x1, x2, x3... with variances of σ(x1)2, σ(x2)2, σ(x3)2... These equations 
can be used to estimate precision in measurements such as height and weight. 

 discrete nuclear measurements with Poisson or normal distribution 
are represented by N1, N2, N3... with variances of σ(N1)2, σ(N2)2, σ(N3)2... or 
N1, N2, N3...



173

 stAtIstICs FOR RADIAtIOn MEAsUREMEnt  

5.5.1. sums and differences

The product xs of the sums or difference of a series of measurements with a 
continuous normal distribution is given by:

xs = x1 ± x2 ± x3 … (5.43) 

The variance of xs is given by:

σ(x1 ± x2 ± x3…)2 = σ(x1)2 + σ(x2)2 + σ(x3)2… (5.44)

The standard deviation is given by:

2 2 2
1 2 3 1 2 3( ...) ( ) ( ) ( ) ...x x x x x xσ σ σ σ± ± = + +   (5.45)

The fractional standard deviation is given by:

2 2 2
1 2 3

F 1 2 3
1 2 3

( ) ( ) ( ) ...
( ...)

...

x x x
x x x

x x x

σ σ σ
σ

+ +
± ± =

± ±
 (5.46)

for counting measurements or measurements with a Poisson or discreet 
normal distribution, the variance is given by: 

2
1 2 3 1 2 3( ...) ...N N N N N Nσ ± ± = ± ±  (5.47)

The standard deviation is given by:

1 2 3 1 2 3( ...) ...N N N N N Nσ ± ± = + +  (5.48)

The fractional standard deviation is given by:

1 2 3
F 1 2 3

1 2 3

...
( ...)

...

N N N
N N N

N N N
σ

+ +
± ± =

± ±
 (5.49)

These equations apply to mixed combinations of sums and differences.
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Table 5.4.  uNcerTaiNTy afTer suMMiNG aNd subTracTiNG 
couNTs

N2 ≪ N1 N2 ≈ N1

N σ σf N σ σf

N1 500 22.4 0.0447  500 22.4 0.0447

N2 10 3.2 0.3162  450 21.2 0.0471

N1 – N2 490 22.6 0.0461  50 30.8 0.6164

N1 + N2 510 22.6 0.0443  950 30.8 0.0324

The influence on the standard deviation and fractional standard deviation 
of summing and subtracting values N1 and N2 is demonstrated in Table 5.4. The 
following conclusions can be drawn:

 — The standard deviation σ for N1 – N2 and N1 + N2 is the same for the same 
values of N1 and N2, but the fractional standard deviation σf is different; 

 — The fractional standard deviation for differences is large when the 
differences between the values are small. 

This is the reason why it is important to limit the background to a value as 
low as possible in counting procedures. in imaging, when scatter or background 
correction is performed by subtraction, image quality deteriorates as a result of 
the increased uncertainty in the pixel values. 

5.5.2. Multiplication and division by a constant

We define: 

xM = Ax (5.50)

where A is a constant.

Then: 

σM = Aσx (5.51)

and
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F
x xA

Ax x

σ σ
σ = =  (5.52)

for counting measurements or measurements with a Poisson or discreet 
normal distribution, the following applies:

xM = AN (5.53)

Then: 

M A Nσ =  (5.54)

and

F
1

N
σ =  (5.55)

similarly, if: 

D
x

x
B

=  (5.56)

where B is also a constant:

M
x

B

σ
σ =  (5.57)

and

F
x xB

B x x

σ σ
σ = =  (5.58)

for counting measurements or measurements with a Poisson or discreet 
normal distribution, the following apply:

D
N

x
B

=  (5.59)

M
N
B

σ =  (5.60)
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and

F
1

N
σ =  (5.61)

it should be noted that multiplying (eqs (5.52) and (5.55)) or dividing 
(eqs (5.58) and (5.61)) a value by a constant does not change the fractional 
standard deviation.

5.5.3. Products and ratios

The uncertainty in the product or ratio of a series of measurements 
x1, x2, x3... is expressed in terms of the fractional uncertainties in the individual 
results, σf(x1), σf(x2), σf(x3)...

The product xP of the products or ratios of a series of measurements with a 
continuous normal distribution is given by:

P 1 2 3      ... ... ... ... ...x x x x× × ×
÷ ÷ ÷=  (5.62)

The notation ×÷  means 1 2x x× or 1 2x x÷ . These equations apply to mixed 
combinations of sums and differences.

The fractional variance of xP is given by:

2 2 2 2
F 1 2 3 F 1 F 2 F 3(       ... ...) ( ) ( ) ( ) ... ...x x x x x xσ σ σ σ× × ×

÷ ÷ ÷ = + +  (5.63)

The fractional standard deviation is given by:

2 2 2
F 1 2 3 F 1 F 2 F 3(       ... ...) ( ) ( ) ( ) ... ...x x x x x xσ σ σ σ× × ×

÷ ÷ ÷ = + +  (5.64)

The standard deviation is given by:

2 2 2
1 2 3 F 1 F 2 F 3 1 2 3(       ... ) ( ) ( ) ( ) ...   (       ... )x x x x x x x x xσ σ σ σ× × × × × ×
÷ ÷ ÷ ÷ ÷ ÷= + + ×  (5.65)

for counting measurements or measurements with a Poisson or discreet 
normal distribution, the product or ratio is given by: 

P 1 2 3      ... ... N N N N× × ×
÷ ÷ ÷=  (5.66)

The fractional variance of NP is given by:

2
F 1 2 3

1 2 3

1 1 1
(       ... ...) ... ...N N N

N N N
σ × × ×

÷ ÷ ÷ = + + +  (5.67)
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The fractional standard deviation is given by:

F 1 2 3
1 2 3

1 1 1
(       ... ...) ... ...N N N

N N N
σ × × ×

÷ ÷ ÷ = + + +  (5.68)

The standard deviation is given by:

1 2 3 1 2 3
1 2 3

1 1 1
(       ... ...)  ... ... (       ... ...)N N N N N N

N N N
× × × × × ×
÷ ÷ ÷ ÷ ÷ ÷= + + +σ  (5.69)

5.6. aPPlicaTioNs of sTaTisTical aNalysis

5.6.1. Multiple independent counts

5.6.1.1. Sum of multiple independent counts

if it is supposed that there are n repeated counts from the same source for 
equal counting times and the results of the measurements are N1, N2, N3....... Nn 
and their sum is Ns, then:

s 1 2 3...N N N N= + +  (5.70)

according to the propagation of error for sums and eq. (5.48):

s 1 2 3 s...N N N N Nσ = + + =  (5.71)

The results show that the standard deviation for the sum of all counts is the 
same as if the measurement had been carried out by performing a single count, 
extending over the period represented by all of the counts.

5.6.1.2. Mean value of multiple independent counts

if the mean value N  of the n independent counts referred to in the previous 
section is calculated, then:

sN
N

n
=  (5.72)
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equation (5.72) is an example of dividing an error-associated quantity N  
by a constant n. equation (5.51), therefore, applies and the standard deviation of 
the mean or standard error is given by:

s sN
N

N nN N
n n n n

σ
σ = = = =  (5.73)

it should be noted that the standard deviation for a single measurement Ni 
(eq. (5.41)) is 

iN iNσ = .
a typical count will not differ greatly from the mean iN N≈ . Thus, the 

mean value based on n independent counts will have an expected error that is 
smaller by a factor of n  compared with any single measurement on which the 
mean is based. To improve the statistical precision of a given measurement by a 
factor of two, the counting time must, therefore, be increased four times. 

5.6.2. standard deviation and relative standard 
deviation for counting rates

if N counts are accumulated over time t, then the counting rate R is given 
by:

N
R

t
=  (5.74)

in the above equation, it is assumed that the time t is measured with a very 
small uncertainty, so that t can be considered a constant. The calculation of the 
uncertainty associated with the counting rate is an application of the propagation 
of errors, multiplying by a constant (eq. (5.60)):

x
R

N R
t t t

σ
σ = = =  (5.75)

The fractional standard deviation is calculated using eq. (5.61):

F
1x N

tR tR tR

σ
σ = = =  (5.76)

The above equations illustrate the calculation of uncertainties if calculations 
are required to obtain a value, and the equation for a single value (section 5.3) 
cannot be applied. The following example illustrates the use of the equations.
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5.6.2.1. Example: comparison of error of count rates and counts accumulated

The activity of two samples is measured. sample 1 is counted with a 
counter that is set to stop when a count of 10 000 is reached. it takes 100 s to 
reach 10 000 counts. sample 2 is counted using an automatic sample changer. 
The activity of the sample is given as 10 000 counts per second (cps) and the 
sample was counted for 100 s. 

calculating the counting error associated with the measurements of 
samples 1 and 2:

sample 1: 

The counts acquired: N = 10 000 counts
standard deviation (eq. (5.41)): s N = 100 counts
fractional standard deviation (eq. (5.42)): F 0.01 1%σ = =

sample 2:

The count rate: 10 000 cps
standard deviation (eq. (5.75)): 10 000

10
100Rσ = =  cps 

fractional standard deviation (eq. (5.76)): 

F
1

0.001 0.1%
10 000  100

σ = = =
×

 

although the counts acquired for sample 1 and the count rate of sample 2 
were numerically the same, the uncertainties associated with the measurements 
were very different. When calculations on counts are performed, it must be 
determined whether the value is a single value or whether it is a value that has 
been obtained by calculation. 

5.6.3. Effects of background counts

background counts are those counts that do not originate from the sample 
or target volume or are unwanted counts such as scatter. The background 
counts during sample counting consist of electronic noise, detection of cosmic 
rays, natural radioactivity in the detector, and down scatter radioactivity from 
non-target radionuclides in the sample. during in vivo measurements, such 
as measurement of thyroid iodine uptake or left ventricular ejection fraction, 
radiation from non-target tissue will also contribute to background. scattered 
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radiation from target as well as non-target tissue will influence quantification and 
will be included in the background. To obtain the true net counts, the background 
is subtracted from the gross counts accumulated. The uncertainty of the true 
target counts can be calculated using eqs (5.48) and (5.49), and the uncertainty of 
true count rates can be calculated using eqs (5.75) and (5.76).

if the background count is Nb, and the gross counts of the sample and 
background is Ng, then the net sample count Ns is: 

s g bN N N= −  (5.77)

The standard deviation for Ns counts is given by eq. (5.48):

s g b( )N N Nσ = +  (5.78)

The fractional standard deviation for Ns counts is given by eq. (5.49):

g b
F s

g b

( )
N N

N
N N

σ
+

=
−

 (5.79)

if the background count rate is Rb, acquired in time tb, and the gross count 
rate of the sample and background is Rg, acquired in time tg, then the net sample 
count rate Rs is: 

s g bR R R= −  (5.80)

The standard deviation for a count rate Rs is given by eqs (5.45) and (5.75):

g b
s

g b

( )
R R

R
t t

σ = +  (5.81)

The fractional standard deviation for a count rate Rs is given by eqs (5.46) 
and (5.76):

g b

g b
F s

g b

( )

R R
t t

R
R R

σ

+

=
−

 (5.82)

if the same counting time t is used for both sample and background 
measurement:

g b
s( )

R R
R

t
σ

+
=  (5.83)
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and

g b
F s

g b

( )
( )

R R
R

t R R
σ

+
=

−
 (5.84)

5.6.3.1. Example: error in net target counts following background correction

The following example illustrates the application to determine the 
uncertainty in the measurement of target volume counts following background 
correction. A planar image of the liver is acquired for the detection of tumours. 
Two equal sized ROIs, ROI1 and ROI2, were selected to cover the areas of the 
two potential tumours. The gross counts Ng in ROI1 were 484 counts (Table 5.5) 
and in ROI2 484 counts. The background counts Nb selected over normal tissue of 
the same area as for the gross counts were 441 and 169 counts. How to calculate 
the uncertainties in the tumor volume net counts is presented. 

The difference and error associated with the difference (Eq. (5.77) 
– Eq. (5.79)) when Ng ≈ Nb are:

Ng – Nb = 484 – 441 = 43 counts

g b( ) 484 441 30.4N Nσ − = + =  counts

F g b
484 441

( ) 0.7073
484 441

N Nσ
+

− = =
−

P g b( ) 70.7%N Nσ − =

The influence on the standard deviation and fractional standard deviation of 
background correction for Ng ≈ Nb and Ng ≫ Nb is demonstrated in Table 5.5. The 
following conclusion can be drawn: the fractional σF and percentage σP standard 
deviations significantly increase when the background increases relative to the 
net counts. 

This is the reason why it is important in measurements of radioactivity to 
acquire as many counts as possible to decrease the uncertainty in detection of 
target volume radioactivity. The following example illustrates the application 
to determine the uncertainty in the measurement of target volume count rate 
following background correction. 
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TABLE 5.5.  CALCULATION OF UNCERTAINTIES IN COUNTS AS A 
RESULT OF BACKGROUND CORRECTION

Ng ≈ Nb Ng ≫ Nb

Source Counts σ counts σF σP (%) Source Counts σ counts σF σP (%)

Ng 484 22.0 0.0455 4.5 Ng 484 22.0 0.0455 4.5

Nb 441 21.0 0.0476 4.8 Nb 169 13.0 0.0769 7.7

Ns 43 30.4 0.7073 70.7 Ns 315 25.6 0.0811 8.1

3σ (Ns) 91 Counts Not  
significant

3σ (Ns) 77 Counts Significant

5.6.3.2. Example: error in net target count rate following background correction

A planar image of the liver is acquired for the detection of tumours. 
Two equal sized ROIs, ROI1 and ROI2, were selected to cover the areas of 
the two potential tumours. The gross count rate Rg in ROI1 was 484 counts 
per minute (cpm) (Table 5.6) and in ROI2 484 cpm. The background count rates 
Rb selected over normal tissue of the same area as for the gross counts were 441 
and 169 cpm. The acquisition time of the image was 2 min. How to calculate the 
uncertainties in the tumor volume net counts is presented.

The difference and error associated with the difference (Eq. (5.80) 
– Eq. (5.82)) when Rg ≈ Rb are:

g b 484 441 43R R− = − = cpm

g b
484 441

( ) 21.5
2 2

R Rσ − = + = cpm

F g b

484 441
2 2( ) 0.5001

484 441
R Rσ

+
− = =

−

P g b( ) 50.0%R Rσ − =

The influence on the standard deviation and fractional standard deviation 
of background correction for Rg ≈ Rb and Rg ≫ Rg is demonstrated in Table 5.6. 
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again, it is shown that the fractional standard deviation σf significantly increases 
when the background count rate increases relative to the net target count rate. 

Table 5.6.  calculaTioN of uNcerTaiNTies iN couNT raTes as a 
resulT of backGrouNd correcTioN

Rg ≈ Rb Rg ≫ Rb

source count rate
(cpm) σ (cpm) σf σP (%) source count rate

(cpm)  σf (cpm) σf σP (%)

Rg 484 15.6 0.0321 3.2 Rg 484 15.6 0.0321 3.2

Rb 441 14.8 0.0337 3.4 Rb 169 9.2 0.0544 5.4

Rs 43 21.5 0.5001 50.0 Rs 315 18.1 0.0574 5.7

t 2 Minutes t 2 Minutes

3σ (Rs) 65 Not 
significant

3σ (Rs) 54 significant

5.6.4. significance of differences between counting measurements 

if N1 and N2 counts are measured in two counting measurements, the 
difference (N1 – N2) between the measured counts may be a result of random 
variations in the counting rate or may be as a result of an actual difference. 
The statistical significance of the difference is evaluated by comparing it to the 
expected random error expressed as the standard deviation σd of the difference. 
if (N1 – N2) > 2σ(N1 – N2), there is a 5% chance that the difference is caused by 
random error (see Table 5.3). if:

N N N N1 2 1 23− > −σ( )  (5.85)

there is a 0.3% chance that the difference is caused by random error and this 
difference is considered significant.

The examples in the previous section to determine whether tumours 
were present following a liver scan illustrate the application to determine the 
significance of the difference between two counts (Table 5.5). The net counts 
and uncertainty over two tumour areas were calculated. do the counts over the 
tumour areas significantly differ from the normal background area?

for the difference for Ng ≈ Nb (Table 5.5) to be significant, eq. (5.85) must 
apply.
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The difference of 43 cpm was less than the norm of 3σ(N1 – N2) and the 
difference is, therefore, not significant. it can be concluded with a smaller than 
0.3% chance that there is not a tumour present. 

an example when Ng ≫ Nb is also given in Table 5.5. in this case, the 
315 cpm counts difference was larger than 3σ(N1 – N2) of 77 cpm. The difference 
in this case is significant. it can be concluded with a smaller than 0.3% chance 
that there is a tumour present.

The significance of differences between the counting rates of samples can 
also be calculated. Two counting rates, R1 and R2, are acquired using counting 
times t1 and t2.

The uncertainty associated with the difference is given by applying 
eqs (5.45) and (5.75):

1 2
1 2

1 2

( )
R R

R R
t t

σ − = +  (5.86)

for the difference R1 – R2 to be significant: 

R1 – R2 > 3σ(R1 – R2) (5.87)

The examples in the previous section (Table 5.6) to determine whether 
tumours were present following a liver scan illustrate an application to determine 
the significance of the difference between two count rates. The net count rate and 
uncertainty over two tumour areas were calculated. do the count rates over the 
tumour areas significantly differ from the normal background area? 

for the difference for Rg ≈ Rb (Table 5.6) to be significant, eq. (5.87) must 
apply. 

The difference count rate of 43 cpm was less than the 65 cpm which is the 
norm of 1 23 ( )R Rσ −  and the difference is, therefore, not significant. it can be 
concluded with a smaller than 0.3% chance that there is not a tumour present. 

an example when Rg ≫ Rb is also given in Table 5.6. in this case, the 
difference of 315 cpm was larger than 1 23 ( )R Rσ −  which was 54 cpm. The 
difference in this case is significant. it can be concluded with a smaller than 0.3% 
chance that there is a tumour present.

5.6.5. Minimum detectable counts, count rate and activity

according to eq. (5.85), if the difference of two measurements is larger 
than three standard deviations, the difference is considered significant. Therefore, 
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the minimum net counts Nm that can be detected with 0.3% confidence is given 
by: 

Nm = N1 – N2 = 3σ(N1 – N2) (5.88)

or

Nm = Ng – Nb = 3σ(Ng – Nb) (5.89)

solving this equation for Ng will give the minimum detectable gross 
counts Nm:

b b
g

(2 9) 72 81

2

N N
N

+ + +
=  (5. 90)

an approximation can be used by assuming that Ng ≈ Nb and: 

g b b3 2N N N≈ +  (5.91)

The minimum detectable activity Am can be calculated:

m
m

N
A

tS
=  (5.92)

where 

S   is the sensitivity of the detection system usually expressed as count rate per 
becquerel;

and t is the time that the background was counted.

5.6.5.1. Example: calculation of minimum activity that can be detected

a detector is to be used to detect 131i in the thyroid of radiation workers. 
The background count was 441 counts measured over a period of 5 min. The 
acquisition time for the thyroid was also 5 min. The sensitivity of the counter was 
0.1 counts · s–1 · bq–1. What is the minimum activity that can be detected?

from eq. (5.90):

b b
g

(2 9) 72 81 (2 441 9) 72 441 81
535

2 2

N N
N

+ + + × + + × +
= = =  counts
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it should be noted that Ng – Nb = 94 counts and 3σ(Ng – Nb) = 94 as was 
specified in eq. (5.85). The minimum detectable radioactivity is:

m
(535 441)

3.124
5 60 0.1

A
−

= =
× ×

bq

The minimum detectable net count rate Rm is given by eq. (5.89):

m g b g b3 ( )R R R R Rσ= − > −  (5.93)

solving this equation for Rg gives the minimum detectable gross count 
rate Rm:

b b
b 2

g g bg
g

36 369 81
2

2

R R
R

t t tt
R

   + + + +   
=  (5.94)

an approximation can be used by assuming that Rg ≈ Rb and from eqs (5.86) 
and (5.87):

b b
g b

g b

3
R R

R R
t t

≈ + +  (5.95)

The minimum detectable activity Am can be calculated:

m
m

R
A

S
=  (5.96)

where S is the sensitivity of the detection system usually expressed as count rate 
per becquerel. 

5.6.5.2. Example 2: calculation of minimum activity that can be detected

a detector is to be used to detect 131i in the thyroid of radiation workers. 
The background count rate was 441 cpm measured over a period of 5 min and the 
thyroid count rate was measured over 1 min. The sensitivity of the counter was 
0.1 counts · s–1 · bq–1. What is the minimum activity that can be detected?

from eq. 5.94:

2

g

9 441 81 441
2 441 36 36

1 1 51 515
2

R

  × + + × + + ×  
= =  cpm
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it should be noted that Rg – Rb = 74 cpm and 3σ(Rg – Rb) = 74 cpm as was 
specified in eq. (5.93). The minimum detectable radioactivity is:

m
(515 441)

12.28
0.1 60

A
−

= =
×

bq

5.6.6. Comparing counting systems

it was concluded in section 5.3.1 that a large number of counts have smaller 
uncertainties expressed as the fractional standard deviation. in section 5.6.3, it 
was shown that if background counts increase, the uncertainty of the net counts 
expressed as fractional standard deviation rapidly increases. Thus, it is desirable 
to use a counting system with a high sensitivity and low background. however, 
when the detector sensitivity is increased, the system will also be more sensitive 
to background. The trade-off between sensitivity and background can be analysed 
as follows.

it is considered that results from systems 1 and 2 are compared. The 
acquisition times for gross and background counts are acquired over the same 
time. from eq. (5.79):

g1 b1
F1 S1

g1 b1

( )
N N

N
N N

σ
+

=
−

and

g2 b2
F2 S2

g2 b2

( )
N N

N
N N

σ
+

=
−

The fractional uncertainties for the net sample counts obtained with the two 
systems are, therefore:

g1 b1

g1 b1F1 S1

F2 S2 g2 b2

g2 b2

( )

( )

N N

N NN

N N N

N N

σ
σ

+

−
=

+

−

 (5.97)

 if F1 S1

F2 S2

( )
1

( )

N

N

σ
σ

< , then system 1 is statistically the preferred system. if 

F1 S1

F2 S2

( )
1

( )

N

N

σ
σ

> , then system 2 is preferred.
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systems can be compared using the count rate and fractional standard 
deviation for the count rate Rs (eq. (5.82)). To compare systems 1 and 2, the ratio 
of the fractional standard deviation is calculated:

g1 b1

g1 b1

g1 b1F1 S1

F2 S2 g2 b2

g2 b2

g2 b2

( )

( )

R R
t t

R RR

R R R
t t

R R

σ
σ

+

−
=

+

−

 (5.98)

equation (5.98) can be used to compare different counting times in the 
same system for measuring fixed geometry samples. however, to obtain the 
best energy window selection in a system, or to compare two systems, the same 
counting time t should be used:

g1 b1

g1 b1F1 S1

F2 S2 g2 b2

g2 b2

( )

( )

R R

R RR

R R R

R R

σ
σ

+

−
=

+

−

 (5.99)

it should be noted that eqs (5.98) and (5.99) are the same except that in 
eq. (5.99) counts are substituted by counting rates.

equation (5.99) can also be used in planar imaging. different collimators 
can be evaluated by comparing counts from a target region to a non-target or 
background region. however, in imaging, spatial resolution is also important and 
must be considered.

5.6.7. Estimating required counting times

it is supposed that it is desired to determine the net sample or target 
counting rate Rs to within a certain fractional uncertainty σf(Rs). it is supposed 
further that the approximate gross sample Rga and background Rba counting rates 
are known from preliminary measurements. if a counting time t is to be used 
for both the sample or target and the background counting measurements, then 
the time required to achieve the desired level of statistical reliability is given by 
eq. (5.84):
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ga ba
2 2
F s ga ba[ ( )]( )

R R
t

R R Rσ

+
=

−

5.6.7.1. Example: calculation of required counting time

The counting time for a thyroid uptake study using a collimated detector is 
to be determined. The preliminary measurement of the gross thyroid count rate is 
Rga = 900 cpm and background count rate Rba = 100 cpm. What counting time is 
required to determine the net count rate to within 5%?

Rsa = 900 – 100 = 800 cpm

2 2 2 2

(900 100) 1000
0.625

(0.05) (900 100) (0.05) (800)
t

+
= = =

× − ×  
min

The time for both the thyroid and background counts is 0.625 min, resulting 
in a total time of 1.25 min.

5.6.8. Calculating uncertainties in the measurement 
of plasma volume in patients

a plasma volume (PV) measurement is required on a patient and the 
uncertainty in the PV measurement is to be calculated. The PV is measured by 
using the dilution principle. a labelled plasma sample of a known volume is 
prepared for injection into the patient. a standard sample with the same activity 
and volume is also prepared for counting. The standard sample is diluted before 
a sample is counted. Ten minutes after injection of the sample, a blood sample 
is obtained, the plasma separated from the blood and the blood sample counted. 
The PV is calculated using the following equation:

s

p

PV
R

VD
R

=  (5.100)

where

Net count rate per millilitre of standard sample Rs = Rs+b – Rb;
Rb  is the count rate of background;
Rs+b   is the gross count rate per millilitre of standard sample;
Net count rate per millilitre of plasma sample Rp = Rp+b – Rb;



190

CHAPTER 5

Rp+b  is gross count rate per millilitre of plasma sample;
V  is volume of standard sample in millilitres with percentage uncertainty σP(V);

and D is dilution of standard sample for counting with percentage 
uncertainty σP(D).

TABLE 5.7.  APPLICATION OF THE PROPAGATION OF ERRORS 
PRINCIPLE TO THE CALCULATION OF UNCERTAINTIES

Values Uncertainty in values

Symbol Value Unit Symbol Calculation σ σF(%)

t 10 min

Rs+b 3200 cpm σ(Rs+b) s+bR

t  
17.89 0.559

Rb 200 cpm σ(Rb) bR

t
4.472 2.236

Rs 3000 cpm σ(Rs) 2 2
s+b b( ( )) ( ( ))R Rσ σ+ 18.44 0.615

Rp+b 1200 cpm σ(Rp+b) p+bR

t  
10.95 0.913

Rp 1000 cpm σ(Rp)
2 2

p+b b( ( )) ( ( ))R Rσ σ+
 

11.83 1.183

s

p

R

R 3 σ(Rs/Rp) 
22

ps s

p s p

( )( ) RR R

R R R

σσ      +          

0.040 1.333

V 5 mL σ(V) 0.150 3.000

s

p

R
V

R  
15 mL σ s

p

R
V

R

      

2 2
s ps

p s p

( / ) ( )
/

R RR V
V

R R R V

σ σ           +             
0.492 3.283

D 200 σ(D) 6.000 3.000

s

p

PV=
R

VD
R 3000 mL σ(PV)

2 2
s p

s p

(( / )V) ( )
PV

( / )V

R R D
R R D

σ σ      +      
133 4.447

The following values were used and measured:

Counting time t = 10 min
V ± σP(V) = 5 ± 3% mL
D ± σP(D) = 200 ± 3% 
Rs+b = 3200 cpm
Rp+b = 1200 cpm 
Rb = 200 cpm
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The uncertainties are calculated step by step by applying the propagation of 
errors principle (see Table 5.7)

The measured PV is, therefore, 3000 ± 133 ml or 3000 ± 4.447%. it 
should be noted that the uncertainty is expressed as one standard deviation. a 
spreadsheet can be used efficiently to do the calculations in the above table. With 
a spreadsheet, the influence in changing the counting time or uncertainties in 
the measurement of the dilution and volume of the standard can be investigated. 
These spreadsheets are ideally suited for calculations of uncertainties in routine 
clinical investigations.

5.7. aPPlicaTioN of sTaTisTical aNalysis: 
deTecTor PerforMaNce

5.7.1. Energy resolution of scintillation detectors

We have directed our attention in the previous sections to determine the 
uncertainty associated with the number of counts measured in a radioactive 
sample or number of counts in an image pixel. Poisson statistics also play an 
important role in other aspects of the detection of radiation. a statistical process 
determines the energy resolution of a detector or the uncertainty associated 
with the energy measurement of a detected photon. This is the reason why the 
energy resolution of a solid state detector is significantly better than that of a 
scintillation detector. The type of detector and the energy of the detected photons 
determine the energy resolution or uncertainty in the energy of a detected photon. 
The energy resolution for a detector system and a specific radionuclide does not 
change from sample to sample. This is different from counting statistics where 
the uncertainty is determined by the number of counts accumulated during a 
measurement. Therefore, even for the same sample and same detector system, the 
uncertainty can change if measurements are repeated following the decay of the 
nuclide.

another important consequence of statistics is that in scintillation cameras 
the location of the position of incoming photons is based on the pulses detected 
by the detectors. Therefore, the statistics of the detector system limits the spatial 
resolution that can be achieved with an imaging device. a clear understanding of 
the statistics associated with the detector when detecting a photon is, therefore, 
important. 

in this section, we will investigate the statistical processes in scintillation 
detectors, since they are widely used in nuclear medicine for sample counting 
and imaging.
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The operation of scintillation detectors can be considered a three stage 
process:

(a) The number x of light photons produced in the scintillator by the detected 
γ ray;

(b) The fraction p of the light photons that will eject electrons from the 
photocathode of the PMT;

(c) The multiplication M of these electrons multiplied at successive dynodes 
before being collected at the anode.

The average number Ne of electrons produced at the anode is given by:

eN xpM=  (5.101)

The fractional variance σf
2 in the electron number N for a three stage 

cascade process is given by eq. (5.63):

2 2 2 2
F e F F F( ) ( ) ( ) ( )N x px pxMσ σ σ σ= + +  (5.102)

it can be shown that for dynodes with identical multiplication 
2
F

1
( )

1
M

M
σ =

−
. it is assumed that the production of light photons follows 

a Poisson distribution and, therefore, 2
F

1
( )x

x
σ = . The fractional variance of 

the production of electrons from light photons at the photocathode is given by 
eq. (5.20) as 2

F
1

( )
p

p
p

σ
−

= :

2
F e

1 1 1 1 1
( )

( 1)
p

N
x x p xp M

σ
−

= + +
−

 (5.103)

The fractional energy resolution Re of detectors is expressed as the fWhM 
divided by the mean photon energy (section 5.3.4.1). from eq. (5.38):

e
E

e

2.355 ( )FWHM 2.355 ( ) NE
R

E E N

σσ
= = =  (5.104)

from eqs (5.103) and (5.104):

E
1

2.355
1 1

1
( 1)

R
p

x
p p M

=
 −  + +   − 

 (5.105)
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5.7.2. Intervals between successive events

The time intervals separating random events are of interest in nuclear 
measurements. such an application is the calculation and measurement of the 
paralysable dead time of counting systems. 

if r is the average rate at which events are occurring, it follows that r dt is 
the differential probability that an event will take place in the differential time 
increment dt. for a radiation detector with unity efficiency, the time interval for 
counting a single radionuclide is given by:

r
N
t

N= =
d
d

l

where 

N  is the number of radioactive nuclei;

and λ is their decay constant.

in order to derive a distribution function to describe the time interval 
between adjacent random events, it is first assumed that an event has occurred at 
time t = 0. What is the differential probability that the next event will take place 
within a differential time dt after a time interval t?

Two independent processes must take place: no events may occur within 
the time interval from 0 to t, but an event must take place in the next differential 
time increment dt. The overall probability will then be given by the product of 
the probabilities characterizing the two processes, or:

Probability of next event 
taking place in dt after 
delay of t

=
Probability of number 
of events during time 
from 0 to t

× Probability of 
event during dt

(5.106)1( ) dP t t = P(0) × r dt

The first factor on the right hand side follows directly from the earlier 
discussion of the Poisson distribution. We seek the possibility that no events will 
be recorded over an interval of length t for which the average number of recorded 
events should be rt. from eq. (5.23): 

0( ) e
(0)

0!

rtrt
P

−
=
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(0) e rtP −=  (5.107)

substituting eq. (5.107) into eq. (5.106):

1( ) d e  drtP t t r t−=  (5.108)

P1(t) is now the distribution function for intervals between adjacent random 
events. figure 5.7 shows the simple exponential shape of the distribution.

FIG. 5.7.  Distribution for intervals between adjacent random events.

it should be noted that the most probable distribution is zero. The average 
interval length is calculated by applying eq. (5.8):

1
0 0

1
0 0

( ) d e  d 1

( ) d e  d

rt

rt

tP t t t t
t

r
P t t t

∞ ∞
−

∞ ∞
−

= = =
∫ ∫
∫ ∫

 (5.109)

5.7.3. Paralysable dead time

in the paralysable dead time model, a fixed dead time τ follows each event 
during the live period of the detector. however, events that occur during the 
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dead period, although not recorded, still create another fixed dead time τ on the 
system following the lost event. The recorded rate of events m is identical to the 
rate of occurrences of time intervals between true events, which exceed τ. The 
probability of intervals larger than τ can be obtained by integrating eq. (5.108):

2 1( ) d ( ) d e rP t t P t t
∞

−= =∫ 


 (5.110)

The rate occurrence m of such intervals is obtained by multiplying 
eq. (5.110) by the true rate r:

e rm r −=   (5.111)

There is no explicit solution for r; it must be solved iteratively to calculate r 
from measurements of m and τ. This can be done using a spreadsheet.
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