Chapter 10: Non-imaging detectors and counters

Slide set of 87 slides based on the chapter authored by P.B. ZANZONICO of the IAEA publication (ISBN 78–92–0–143810–2): Nuclear Medicine Physics: A Handbook for Teachers and Students

Objective: To familiarize the student with the fundamental concepts of electronics related to nuclear medicine imaging devices

Slide set prepared in 2015 by J. Schwartz (New York, NY, USA)

CHAPTER 10 TABLE OF CONTENTS

- 10.1. Introduction
- 10.2. Operating principles of radiation detectors
- 10.3. Radiation detector performance
- 10.4. Detection and counting devices
- 10.5. Quality control of detection and counting devices

10.1. INTRODUCTION

- Historically, nuclear medicine has been largely an imaging based specialty, employing such diverse and increasingly sophisticated modalities as:
 - Rectilinear scanning
 - (Planar) gamma camera imaging
 - Single photon emission computed tomography (SPECT)
 - Positron emission tomography (PET)

10.1. INTRODUCTION

- Non-imaging radiation detection, however, remains an essential component of nuclear medicine, including:
 - Survey meters
 - Dose calibrators
 - Well counters
 - Intra-operative probes
 - Organ uptake probes

- Radiation detectors encountered in nuclear medicine may generally be characterized as either
 - scintillation
 - Visible light is produced as radiation excites atoms of a crystal
 - Light is converted to an electronic signal/pulse
 - Pulse is amplified by a PMT
 - High voltage (500–1500 V)
 - ionization detectors
 - Free electrons are produced as radiation ionizes a stopping material
 - Happens within a sensitive volume
 - Electrons electrostatically collected by a bias voltage (10–500 V) produce an electron signal

- For both detector types, the 'unprocessed' signal is then shaped and amplified
- For some types of detector, the resulting pulses are sorted by their amplitude (or pulse height), which is related to the X-ray or γ-ray energy absorbed in the detector

- Basic design and operating principles of
 - a) Scintillation
 - b) Ionization detectors

- Detector materials
 - Most commonly gaseous
 - Known as gas filled detectors
 - Most widely encountered ones in nuclear medicine are
 - Dose calibrators
 - Geiger counters
 (Difference is the bias voltage magnitude between anode & cathode)
 - Solid state ionization detectors also exist

- □ V < 300 V, Recombination region</p>
 - Created ion pairs may recombine
 - Prevents some electrons from reaching the anode
 - Yields an artefactually low signal
- At V = 300 V
 - All primary electrons are collected at the anode
 - Detector signal is maximized

- Arr V = 300 600 V, Ionization chamber region
 - Signal does not increase
 - There are no additional primary electrons to collect
 - Overall signal is equivalent to the number of primary electrons
 - Proportional to the energy of the incident radiation

- V = 600 900 V, Proportional counter region
 - Large electrostatic force of attraction of the anode
 - Free electrons accelerate towards the anode
 - Gain speeds high enough to eject additional (secondary) orbital electrons
 - Contribute to an increasing overall signal
 - Higher the voltage means:
 - More energetic the electrons
 - More secondary electrons added to the overall signal
 - Number of electrons in the overall signal is proportional to energy of the incident radiation

- V = 900 1200 V, Geiger–Müller region
 - Free electrons (primary and secondary) are accelerated
 - Speeds are very high
 - Tertiary electrons are ejected from the anode surface
 - They are accelerated back to the anode surface
 - Eject even more electrons
 - Electron 'cloud' over the anode is formed
 - Charge amount of the electron cloud is independent of the number of electrons initiating its formation
 - Yields a constant overall signal even with more bias increase
 - Signals are independent of the incident radiation energy

- □ V > 1200 V, Spontaneous discharge region
 - Atoms ionized spontaneously without incident radiation
 - Artefactual signal produced

10.2.1. Ionization detectors

□ The signal (expressed as the amplification factor, that is, the total number of electrons per primary electron produced in the detector material) as a function of the bias voltage for gas filled ionization detectors

- Other differences among different types of gas ionization detectors
 - Sealed vs unsealed sensitive volumes
 - Unsealed volumes contain only air at atmospheric pressure
 - Signal must be corrected for the difference between the temperature and pressure at which the detector was calibrated and the ambient conditions at the time of an actual measurement
 - Usually STP: 27°C and 760 mm Hg

- Sealed volumes
 - Use gases other than air (e.g. argon)
 - Gas may be pressurized
 - Provides higher stopping power
 - Provides higher sensitivity
- Different anode and cathode geometries
 - Parallel plates (in some ionization chambers)
 - Wire along the axis of a cylinder (used in Geiger counters)

- Ionization chambers are widely used in radiation therapy
 - Used to calibrate the output of therapy units
 - Used in nuclear medicine as dose calibrators
 - To assay radiopharmaceutical activities
 - Relatively low sensitivity
 - Not a disadvantage because radiation intensities are typically rather large
 - Response stability is an advantage as it allows the use of unconditioned AC electrical power

- Proportional counters
 - Need a stable bias voltage
 - specialized power supplies
 - Restricted to research applications (e.g. in radiobiology)
 - Need higher sensitivity
 - Need capability of energy discrimination
 - Often employ an unsealed, gas flow-through sensitive volume

- Geiger counters
 - High sensitivity and stability with respect to voltage
 - Can use a portable power supply such as an ordinary battery
 - Widely used as survey meters (sensitivity is critical)
 - To measure ambient radiation levels
 - To detect radioactive contamination
 - Sealed sensitive volumes
 - Don't need temperature—pressure corrections

10.2.1. Ionization detectors

■ The functional properties & applications of the various types of ionization are largely dictated by their respective bias voltage dependent signal

	lonization detector	Proportional counter	Geiger counter
Bias voltage operating range	300–600 V	600–900 V	900–1200 V
Response stable with respect to voltage?a	Yes	No	Yes
Sensitivity ^b	Low	Intermediate	High
Capable of energy discrimination?c	Yes	Yes	No
Applications	Dose calibrator	Research	Survey meter

10.2.2. Scintillation detectors

- Scintillation detectors
 - Most commonly a crystalline solid such as
 - Thallium-doped sodium iodide (NaI(TI))

Radiation interacts with and deposits energy

in a scintillator

 Deposited radiation energy is converted to visible light

Emitted isotopically

- Scintillation detector structure
 - Light-tight crystal housing
 - Inner surface coated with reflective material
 - Light emitted towards crystal's sides and front of the of the crystal are reflected back towards a PMT
 - Maximizes the amount of light collected
 - Maximizes overall sensitivity
 - Photocathode
 - Coated on the inner surface of the PMT
 - Emits electrons

- Scintillation detector structure
 - Focusing grid
 - Immediately beyond the photocathode
 - At relatively low +voltage , ~10 V
 - Light pipe
 - Between crystal back and PMT entrance window
 - Thin layer of transparent optical gel
 - Optically couples crystal to PMT
 - Maximizes transmission (>90%) of the light signal from the crystal into the PMT
 - At ground: 0 V

- Scintillation detector structure
 - Dynodes
 - 1st dynode: attracts electrons passing through the focusing grid
 - Relatively large +voltage, ~300 V
 - Average of 3 electrons are ejected
 - 2nd dynode:
 - Even larger +voltage, ~400 V
 - Average of 3 e⁻ 's ejected per incident one

- Scintillation detector structure
 - Dynodes
 - PMT has 10–12 such dynodes (or stages)
 - Each ~100 V more + than the preceding
 - Entire PMT e⁻ amplification = 3¹⁰-3¹²
 - Output signal generated at last anode
 - Irregularly shaped
 - Shaped by a preamplifier
 - Further amplified into a logic pulse
 - can be further processed electronically

- Pulse amplitudes (or 'heights') are proportional to:
 - Number of electrons produced at photocathode
 - Energy of the incident radiation
 - → Energy discriminator
 - Known as a pulse height analyser
 - Sorts pulses by heights
 - Pulses with height (i.e. energy) within the preset energy window are counted by a timer/scaler

- Advantageous features of scintillation detectors include:
 - High electron density, determined by:
 - ρ
 - Z_{eff}
 - More photoelectric than Compton interactions
 - Facilitates energy discrimination of photons
 - Maximizes
 - \triangleright Stopping power (i.e. linear attenuation coefficient μ)
 - Sensitivity

- Advantageous features of scintillation detectors include:
 - High light output
 - Reduces statistical uncertainty (noise)
 - Improves energy resolution & scatter rejection
 - Speed of light emission
 - Example: Important for PET

- Other detector considerations include:
 - Transparency of the crystal to its own scintillations (i.e. minimal self-absorption)
 - Matching of the index of refraction η of the crystal to that of the photodetector
 - Matching of the scintillation wavelength to the light response of the photodetector
 - Minimal hygroscopic behaviour

- Most widely used scintillators in nuclear medicine include
 - NaI(TI)
 - γ-cameras / SPECT systems
 - Well counters
 - Organ uptake probes
 - BGO
 - PET (higher stopping power for 511 keV)
 - LSO(Ce) or LSO
 - GSO(Ce) or GSO
 - CsI(TI), CsI(Na), NaI(TI), BGO and LSO have also been used in intra-operative probes

- Radiation detectors may be quantitatively characterized by many different performance parameters
 - Particularly for those detectors such as γ -cameras which localize (image) as well as count radiation
- For non-imaging radiation detectors and counters, the most important performance parameters are:
 - Sensitivity (or efficiency)
 - Energy resolution
 - Count rate performance (or 'speed')

- Sensitivity (or efficiency)
 - Detected count rate per unit activity (e.g. cpm/MBq)
 - Highly dependent on:
 - Source—detector geometry
 - Intervening media

- Geometric sensitivity
 - Fraction of emitted radiations which strike the detector
 - Directly proportional to the detector area
 - Inversely proportional to the square of source—detector distance (for point source)

- Intrinsic sensitivity
 - Fraction of radiation striking the detector & stopped within the detector
 - Intrinsic sensitivity 7 with:
 - Detector thickness
 - Z_{eff}
 - p
 - Intrinsic sensitivity \(\simega\) with:
 - photon energy
 (Higher energy photons are more penetrating & are more likely to pass detector without interacting)

- Characteristic X- & γ-rays are emitted with well-defined discrete energies
 - Output pulses from absorption will appear to originate over a range of energies (due to the relatively coarse energy resolution of the detector)

- Many radiation detectors employ energy-selective counting
 - Using energy range (windows)
 - Scintillation detectors use a 20% window ($E_{\gamma} \pm 10\%$) e.g. 126–154 keV for 140 keV ^{99m}Tc γ-ray
 - Overall sensitivity appears to increase as E_{γ} window is widened
 - This results in acceptance of more scattered as well as primary (i.e. unscattered) radiations

10.3.1. Sensitivity

- Detector should be calibrated for each radionuclide & energy window used
 - Sensitivity S must be determined at installation & periodically after:

$$S = \frac{R_{\rm g} - R_{\rm b}}{\mathcal{A}_0 e^{-\lambda \Delta t}}$$

 $R_{\rm q}$ is the gross (i.e. total) count rate (cpm) of the radionuclide source (RS);

R_b is the background (BG), or blank, count rate (cpm);

 \mathcal{A}_0 is the activity (MBq) of the radionuclide source at calibration;

 λ is the physical decay constant

 Δt is the time interval (in months or years depending on the half-life) between the calibration of the radionuclide and the current measurement

10.3.1. Sensitivity

- S is highly dependent on the source—detector counting geometry
 - Size of the source
 - Shape of the source
 - Source—detector distance
- Measured value applies exactly only for the geometry used for the measurement

10.3.2. Energy resolution

Energy resolution

- Ability to separate/discriminate different energies
- Given by the width of photopeak

$$FWHM(\%) = \frac{\Delta E}{E_{\lambda}} \times 100\%$$

- Related to Poisson 'noise'
 - Statistical uncertainty inherent in the detection process
- Important for scatter rejection with imaging detectors
 - Compton scattered radiation within source loses energy
 - Discrimination between scattered from primary radiations

10.3.2. Energy resolution

Energy resolution

 Scattered and primary radiations overlap (due to finite resolution)

$$FWHM(\%) = \frac{\Delta E}{E_{\lambda}} \times 100\%$$

- Better resolution = narrower photopeak
 - Can better separate unscattered & scattered radiations
 - Can eliminate more scattered radiation counts
 - Fewer counts due to unscattered radiation are discarded

10.3.3. Count rate performance ('speed')

- Dead time for radiation detectors
 - Time required for a counting system to record an event
 - Additional events cannot be recorded
 - Typically $\tau \sim 5-10 \, \mu s$ for modern scintillation detectors
 - Associated count losses
 - Measured count rate is lower than actual count rate

10.3.3. Count rate performance ('speed')

- Detectors are characterized as either
 - Non-paralysable
 - Dead-time due only to counted events
 - Example: Geiger counters (with quenching gas)
 - Paralysable
 - Dead-time due counted & not counted events
 - Example: well counters, γ cameras, PET scanners

Modern scintillators generally incorporate automated algorithms to

correct for dead time

Observed vs true count rates for paralysable and non-paralysable radiation detectors

10.4.1. Survey meters

- Essential component of any radiation safety program
- Portable
- Battery operated
- Monitor ambient radiation levels
 exposure rates (C · kg⁻¹· h⁻¹) / count rates (e.g. in cpm)
- Solid state scintillation detectors
 - Employ non-air-equivalent crystal as the detection medium
 - Cannot measure exposure rates, only count rates

10.4.1. Survey meters

- Gas filled ionization detectors
 - 'Cutie-pies'
 - Low sensitivity ionization chambers (i.e. low ΔV between anode & cathode)
 - Used with high fluxes of X-rays and γ-rays
 - Signal depends on the energy of the detected X-/γ-rays
 - Directly related to the exposure for all radionuclides

10.4.1. Survey meters

- Gas filled ionization detectors
 - 'Geiger counters
 - Operated at high ΔV
 - High e⁻ amplification
 - High sensitivity
 - Suited for low level surveys (e.g. radioactive contamination)
 - Same amplitude signal for all energies
 - Calibrations apply only to the particular radionuclide(s) used to calibrate the counter

10.4.2. Dose calibrator

- Used for assaying radiopharmaceutical activities in:
 - vials
 - syringes
 - other small sources (e.g. brachytherapy sources)
- Pressurized gas filled ionization chamber
 - sealed sensitive volume
 - 'well'-type geometry
 - High geometric efficiency
 - Overall sensitivity adequate for relatively high radiopharmaceutical activities

10.4.2. Dose calibrator

- Relatively low intrinsic sensitivity
- Adjust energy dependent responses via
 - Isotope-specific push-buttons
 - Potentiometer with isotope-specific settings
 - Accurate activity readouts (i.e. kBq or MBq) for any radioisotope

- Used for high sensitivity counting of radioactive specimens
 - Blood
 - Urine
 - 'Wipe testing'
- Use isotope specific calibration factor (cpm/MBq)
 - Provides results in terms of activity (e.g. MBq)

- Most commonly NaI(TI))
- Common design
 - Cylindrical scintillation crystal
 - Circular bore (well) for sample drilled part-way into the crystal backed by a PMT + electronics

- Alternative design
 - 'Through-hole'
 - Hole is drilled through the entire crystal
 - Facilitates sample exchange
 - Samples are centered lengthwise
 - More constant response for different volumes
 - Slightly higher sensitivity than well counters
- Crystal is surrounded by thick lead shielding in both designs
 - Minimizes ambient radiation background

- Scintillation counters often have:
 - Multichannel analyzer for energy (i.e. isotope) selective counting
 - Automatic sample changer for multiple samples automated counting
- High intrinsic & geometric efficiencies
 - Resulting from thick crystal & well-type configuration
 - Extremely sensitive
 - Can reliably count activities ≤ ~100 kBq
 - At higher activities
 - Dead time losses may become prohibitive
 - The measured counts inaccurate

- Integrated computer
 - To create & manage counting protocols
 - Specify isotope
 - Specify energy window
 - Specify counting interval
 - Manage sample handling
 - Apply background, decay, dead time & other corrections
 - Yield dead time-corrected net count rate decay corrected to the start of the current counting session

- Small hand-held counting devices
- Widely used in cancer management
 - To expeditiously identify & localize sentinel lymph nodes
 - Reduce the need for more extensive surgery
 - Identify & localize visually occult disease

- Almost exclusively for X-/γ-rays counting
 - Scintillation
 - Low cost
 - High sensitivity for medium-high energy γ 's
 - Disadvantages relative to semiconductor
 - bulkiness
 - poor energy resolution
 - Poor scatter rejection
 - Semiconductor (ionization)

- Plastic scintillator β probes have also been developed
- Small (~10 cm) FOV intra-operative γ-cameras recently available
- Semiconductor based probes
 - Compact
 - More electrons per X/γ-ray stopped
 - Excellent energy resolution
 - Excellent scatter rejection
 - Thin (only ~1 mm)
 - Minimize structural imperfections which degrade energy resolution
 - Lower intrinsic sensitivity
 - Disadvantage
 - Limited thickness
 - Lower sensitivity

- Typical intra-operative probe
 - a) Hand-held detector
 - b) Control and display unit
 - Displays current count rate
 - Often emits an audible signal, the tone of which is related to the count rate

- c) Detector & collimator assembly diagram
 - Detector (crystal) recessed from the collimator aperture

10.4.5. Organ uptake probe

- Almost exclusively for 'thyroid' uptake
 - Decay-corrected % of administered activity in the thyroid
 - May be measured following oral administration of:
 - ¹³¹l-iodide
 - ¹²³l-iodide
 - 99mTc-pertechnetate

Consists of

- Wide-aperture, diverging collimator
- Nal(Tl) crystal (~5 cm thick, ~5 cm diameter)
- PMT
- Preamplifier
- Amplifier
- Energy discriminator (i.e. energy window)
- Gantry (stand)

- Generally supplied as
 - Integrated computerized system
 - With automated
 - Data acquisition
 - Processing capabilities
 - Yield results in terms of % uptake

10.4.5. Organ uptake probe

- a) A typical organ ('thyroid') uptake probe system
 - Integrated computer, set-up
 - Large neck to collimator aperture distance (~30 cm)
 - Reduces overall sensitivity
 - BUT serves to minimize the effect of
 - the exact size, shape and position of the thyroid
 - distribution of radioisotope within the gland

b) A diagram (side view) of the open, or 'flat-field', diverging

collimator

- Determination of thyroid uptake includes:
 - Measurement of the thyroid (i.e. neck) count rate
 - 'Thigh' background count rate
 - Measured over thigh
 - Presumed to approximate the count contribution of extra-thyroidal neck activity
 - Ambient (i.e. 'room') background
 - 1–5 min interval for each measurement

- Determination of thyroid uptake includes:
 - Standard count rate
 - Often counted in neck phantom
 - Used to automatically correct for:
 - Decay
 - Day-to-day system sensitivity variation
 - Typically a dilution of the administered solution
 - Fraction of administered activity is independently determined < 1

- Determination of thyroid uptake includes:
 - Thyroid uptake is calculated as follows:

uptake (%) =
$$\frac{C_{\text{neck}}/t_{\text{neck}} - C_{\text{thigh}}/t_{\text{thigh}}}{C_{\text{standard}}/t_{\text{standard}} - C_{\text{room}}/t_{\text{room}}} \times F \times 100\%$$

- C = total counts
- t = measurement time
- F = fraction of administered activity in the standard
- Known as 'two-capsule' method
 - One ¹³¹I capsule administered
 - A second, identical one is the standard
 - Counted with each uptake measurement

10.4.5. Organ uptake probe

Alternatively, 'One-capsule' method:

- Patient capsule can be measured immediately before administration
- Each subsequent uptake value can be corrected from time of measurement administration:
 - By multiplying right side of previous equation by $e^{\lambda \Delta t}$
 - λ = physical decay constant
 - Δt = administration to measurement time

- For both methods, the fraction of administered activity in the standard is 1
- Some centers administer radio-iodine as a solution
 - More cost effective
- Now often done by ROI analysis of planar gamma-camera images of neck & a standard (i.e. phantom) acquired with parallel-hole collimator

- Organ uptake probes have also been used to measure total body activity
 - Example: As part of individualized thyroid cancer dosimetry-based radioiodine treatment
 - Patient may serve as own standard
 - Performed with:
 - Collimator removed from probe
 - Crystal
 - Oriented horizontally
 - Height above the floor = mid-height of patient at ~3 m from crystal
 - Conjugate-view measurements
 - 'Time 0' total body count rate S measurement
 - Shortly (30–60 min) after administration
 - Allows some dispersion throughout body
 - Before patient has voided / excreted any activity

10.4.5. Organ uptake probe

The % administered activity in the body is:

Total body activity (%) =
$$\frac{\left[\left(\frac{A}{t_{\rm A}} - \frac{B}{t_{\rm B}} \right) \times \left(\frac{P}{t_{\rm P}} - \frac{B}{t_{\rm B}} \right) \right]^{1/2}}{\left[\left(\frac{A(0)}{t_{\rm A(0)}} - \frac{B(0)}{t_{\rm B(0)}} \right) \times \left(\frac{P(0)}{t_{\rm P(0)}} - \frac{B(0)}{t_{\rm B(0)}} \right) \right]^{1/2}} \times 100\%$$

A & P = Anterior / Posterior total counts

B = Room (background) counts

 t_A , t_P & t_B = counting intervals A, P & B

(0) = quantities at time 0

10.5. QUALITY CONTROL OF DETECTION AND COUNTING DEVICES

- Quality control (QC)
 - Established set of ongoing measurements & analyses
 - Designed to ensure procedure / instrument performance is within a predefined acceptable range
 - Critical component in routine nuclear medicine practice

10.5. QUALITY CONTROL OF DETECTION AND COUNTING DEVICES

- A sound & compliant QC programme requires
 - Documentation
 - Organized, retrievable results records
 - Written description included in the facility's procedure manual:
 - Tolerance of results of each procedure
 - Corrective action for an out of tolerance result
 - Signed and dated by facility director, physicist or other responsible individual

10.5. QUALITY CONTROL OF DETECTION AND COUNTING DEVICES

- Each QC test should have a record of:
 - Initials/signature of individual performing test
 - Test date and time
 - Device make, model and serial number
 - Reference sources make, model, serial number, activity at date of calibration
 - Result(s)
 - Notation indicating on whether test result was or not acceptable

10.5. QUALITY CONTROL OF DETECTION AND COUNTING DEVICES 10.5.1. Reference sources

- QC tests often performed with surrogate radionuclides called reference sources
 - Not radionuclides used clinically
 - Longer lived
 - Must match frequency & energy of X and γ-ray emissions of clinical radionuclide
 - Commercially available in various activities & geometries, depending on the application

10.5. QUALITY CONTROL OF DETECTION AND COUNTING DEVICES 10.5.1. Reference sources

- QC tests often performed with surrogate radionuclides called reference sources
 - In the USA, certified activities must be traceable NIST
 - Helps ensure calibrated activity accuracy
 - A single standard may be used for months to years
 - No need to prepare sources on a daily/weekly basis
 - Avoid possible inaccuracies in dispensing activity
 - Avoids possibility of radioactive contamination

10.5. QUALITY CONTROL OF DETECTION AND COUNTING DEVICES 10.5.1. Reference sources

- QC tests often performed with surrogate radionuclides called reference sources
 - Must be periodically checked for leakage (i.e. 'wipe-tested')
 - Up-to-date inventory must be maintained
 - Still radioactive at end of useful lifespan
 - Must be returned to vendor / third party / otherwise disposed of as radioactive waste

10.5. QUALITY CONTROL OF DETECTION AND COUNTING DEVICES 10.5.2. Survey meter

- QC tests of survey meters generally include daily battery check
 - Voltage should be within acceptable range
 - Confirm it's not contaminated
 - Reproducibly low exposure in the absence of radioactivity
 - Measure background exposure / count rate daily
 - Use area remote from radioactive sources

10.5. QUALITY CONTROL OF DETECTION AND COUNTING DEVICES 10.5.2. Survey meter

- Check daily for response constancy
 - Measure exposure / count rate of long-lived reference
 - Reproducible measurement geometry
 - Should agree ± 10%; if not, the meter should be re-calibrated
- Checked for accuracy
 - Use long lived reference sources
 - At installation
 - Annually
 - After any repair

10.5. QUALITY CONTROL OF DETECTION AND COUNTING DEVICES 10.5.2. Survey meter

- Point-source geometry is approximated when
 - Source is 'small'
 - When compared to photon mean free path
 - Source meter distance is 'large'
 - When compared to source dimensions
 - Expected dose rate in air is given by:

$$\dot{D} = \frac{\mathcal{A}_0 e^{-\lambda \Delta t} \Gamma_{\delta}}{d^2}$$

 \mathcal{A}_0 = reference source activity at calibration

 λ = physical decay constant

 Δt = calibration - current measurement time interval

 Γ_{δ} = Air kerma rate constant (γ -energies > 20 keV) of source

d = source-mete distance

10.5. QUALITY CONTROL OF DETECTION AND COUNTING DEVICES

10.5.2. Survey meter

Long lived radionuclides used as reference sources for instrumentation quality control

Radionuclide	Half-life	Physical decay constant λ	Photopeak energy E _γ and frequency of principal X ray or γ ray	Air kerma rate constant Γ_{δ} (mGy \cdot m ² \cdot h ⁻¹ \cdot GBq ⁻¹) ^a	Geometry and activity	Quality control application
⁵⁷ Co	272 d	0.00254/d	122 keV (86%)	14.1	Test tube-size rod, ~37 kBq	Well counter constancy and accuracy
					Vial/small bottle, 185–370 MBq	Dose calibrator accuracy and constancy
⁶⁸ Ge ^b	287 d	0.00241/d	511 keV (178%)	129	Test tube-size rod, 37 kBq	Well counter constancy and accuracy
					Vial/small bottle, 185–370 MBq	Dose calibrator accuracy and constancy
¹³⁷ Cs	30 a	0.0231/a	662 keV (86%)	82.1	Test tube-size rod, 37 kBq	Well counter constancy and accuracy
					Vial/small bottle, 185–370 MBq	Dose calibrator accuracy and constancy

The air kerma rate constant Γ_δ is equivalent to the older specific γ ray constant Γ.

Germanium-68 in a sealed source is in secular equilibrium with its short lived, positron emitting daughter ⁶⁸Ga (half-life: 68 min).

- Routine dose calibrator QC tests
 - Constancy must be checked daily
 - Use NIST-traceable reference source, e.g. ⁵⁷Co, ⁶⁸Ge or ¹³⁷Cs
 - Place in calibrator
 - Record activity reading on each scale
 - Daily readings should agree within 10%

- Routine dose calibrator QC tests
 - Accuracy
 - At least quarterly
 - Daily checks recommended
 - At least 2 NIST-sources placed separately in the calibrator
 - Record activity reading on each scale
 - Linearity
 - 'decay method'
 - At least quarterly
 - Daily readings should agree within 10%

- Measurements at installation
 - 99mTc geometry dependent response
 - Volume dependent (2–25 mL) correction factors relative to 'standard' volume (e.g. 10 mL)
 - Required periodically following installation

10.5. QUALITY CONTROL OF DETECTION AND COUNTING DEVICES

10.5.3. Dose calibrator

- 'Decay method' of linearity
 - Quarterly
 - Use ^{99m}Tc source
 - High activity (~37 GBq)
 - Independently calibrated
 - Activity is assayed at 12 h intervals over 3 consecutive days
 - Time = 12 ^{99m}Tc half-lives
 - Activity decays to ~10 MBq
 - Plot measured activities versus time on a semi-logarithmic graph
 - Draw best fit straight line through data
 - Difference between each measured activity point and best fit line should be less than 10%

- 'Shield method' to checking linearity
 - 99mTc source
 - Place Pb sleeves of increasing 'decay-equivalent' thickness in dose calibrator
 - Causes decay-equivalent activity for each sleeve
 - Much faster than the decay method
 - Takes minutes instead of days
 - Initial decay based calibration of the set of sleeves is recommended

10.5. QUALITY CONTROL OF DETECTION AND COUNTING DEVICES

10.5.3. Dose calibrator

- Set of lead-lined plastic sleeves
 - For evaluation of dose calibrator linearity by the shield method
 - The set is supplied with a
 - 0.64 cm thick lead base
 - Color coded unlined sleeve
 - Provide activity measurement equivalent to '0' time point measurement of the decay method
 - 6 color coded lead-lined sleeves
 - Provide attenuation factors
 - Nominally equivalent to decay over 6, 12, 20, 30, 40 and 50 h, respectively

10.5. QUALITY CONTROL OF DETECTION AND COUNTING DEVICES 10.5.4. Well counter

- Routine well counter QC tests
 - Photopeak energy window checks
 - If equipped with a multichannel analyser
 - Check energy spectrum is 'peaked'
 - i.e. photopeak should coincide with preset photopeak energy window
 - Background
 - Check for each energy window used
 - Count rate should be checked daily
 - Electronic noise & ambient radiation
 - May be relatively high and variable in a nuclear medicine facility
 - Will produce a non-zero/potentially fluctuating count rate
 - Trace contamination will produce inaccurately high count rate values

10.5. QUALITY CONTROL OF DETECTION AND COUNTING DEVICES 10.5.4. Well counter

- Routine well counter QC tests
 - Always include 'blank' (i.e. an empty counting tube or vial)
 - To determine the current background count
 - Constancy
 - Use at least one NIST-traceable source
 - Should be counted each day
 - Daily net (i.e. gross minus background) count rates should agree within 10%
 - Efficiency (or sensitivity) (in cpm/kBq)
 - Counter should be calibrated
 - Measure for each radionuclide used
 - Measure at installation, annually & after any repair

10.5. QUALITY CONTROL OF DETECTION AND COUNTING DEVICES 10.5.5. Intra-operative probe

- QC tests of intra-operative probes
 - Daily battery and background checks
 - Daily bias check for primary & any backup battery
 - Verify bias/high voltage is within acceptable range
 - Lower counts/count rates from inappropriate energy window may go unnoticed
 - May not provide energy spectrum display
 - May not be possible to visually check peaking

10.5. QUALITY CONTROL OF DETECTION AND COUNTING DEVICES 10.5.5. Intra-operative probe

- QC tests of intra-operative probes
 - Daily checks count rate constancy
 - Use long lived reference source (e.g. ⁵⁷Co, ⁶⁸Ge and/or ¹³⁷Cs)
 - A marked change (e.g. >+10%) in the net count rate from one day to the next may indicate an inappropriate energy window setting or some other technical problem.
 - Reference sources should each be put into some sort of cap
 - To fit reproducibly over the probe
 - To avoid spurious count-rate differences due to source—detector geometry variations

10.5. QUALITY CONTROL OF DETECTION AND COUNTING DEVICES 10.5.6. Organ uptake probe

- Aside from differences in counting geometry and sensitivity, uptake probes and well counters actually have very much in common
- □ The QC procedures checks of the photopeak energy window, background, constancy and efficiency — are, therefore, analogous
- Importantly, however, efficiency should be measured more frequently — for each patient — than for a well counter, so that the probe net count rates can be reliably converted to thyroid uptakes for individual patients

