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13.1.	INTRODUCTION

This chapter discusses how 2‑D or 3‑D images of tracer distribution can 
be reconstructed from a series of so-called projection images acquired with a 
gamma camera or a positron emission tomography (PET) system [13.1]. This 
is often called an ‘inverse problem’. The reconstruction is the inverse of the 
acquisition. The reconstruction is called an inverse problem because making 
software to compute the true tracer distribution from the acquired data turns out 
to be more difficult than the ‘forward’ direction, i.e. making software to simulate 
the acquisition.

There are basically two approaches to image reconstruction: analytical 
reconstruction and iterative reconstruction. The analytical approach is based 
on mathematical inversion, yielding efficient, non-iterative reconstruction 
algorithms. In the iterative approach, the reconstruction problem is reduced 
to computing a finite number of image values from a finite number of 
measurements. That simplification enables the use of iterative instead of 
mathematical inversion. Iterative inversion tends to require more computer 
power, but it can cope with more complex (and hopefully more accurate) models 
of the acquisition process.
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13.2.	ANALYTICAL RECONSTRUCTION

The (n-dimensional) radon transform maps an image of dimension n to 
the set of all integrals over hyperplanes of dimension (n – 1) [13.2]. Thus, in 
two dimensions, the radon transform of image Λ corresponds to all possible line 
integrals of Λ. In three dimensions, the radon transform contains all possible 
plane integrals.

The (n-dimensional) X ray transform maps an image of dimension n to 
the set of all possible line integrals. In all PET and in almost all single photon 
emission computed tomography (SPECT) applications, the measured projections 
can be well approximated as a subset of the (possibly attenuated) X ray transform, 
because the mechanical (SPECT) or electronic (PET) collimation is designed to 
acquire information along lines (the line of response (LOR), see Chapter  11). 
Consequently, reconstruction involves computing the unknown image Λ from 
(part of) its X ray transform. Figure 13.1 shows PET projections, which are often 
represented as a set of projections or a set of sinograms. 

ϕ

z

s

FIG. 13.1.  The relation between projections and sinograms in parallel-beam projection. The 
parallel-beam (PET) acquisition is shown as a block with dimensions s, ϕ and z. A cross-section 
at fixed ϕ yields a projection; a cross-section at fixed z yields a sinogram.

An important theorem for analytical reconstruction is the central slice (or 
central section) theorem, which gives a relation between the Fourier transform of 
an image and the Fourier transforms of its parallel projections. Below, the central 
slice theorem for 2‑D is found as Eq. (13.7) and the 3‑D central section theorem 
as Eq. (13.29).
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The direct Fourier method is a straightforward application of the central 
section theorem: it computes the Fourier transform of the projections, uses the 
central section theorem to obtain the Fourier transform of the image and applies 
the inverse Fourier transform to obtain the image. In practice, this method is 
rarely used; the closely related filtered back projection (FBP) algorithm is far 
more popular.

13.2.1.	 Two dimensional tomography

13.2.1.1.	X ray transform: projection and back projection

In 2‑D, the radon transform and X ray transform are identical. 
Mathematically, the 2‑D X ray (or radon) transform of the image Λ can be written 
as follows: 
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where the δ function is unity for the points on the LOR (s, ϕ) and zero elsewhere. 
It should be noted that with the notation used here, ϕ = 0 corresponds to projection 
along the y axis.

The radon transform describes the acquisition process in 2‑D PET and in 
SPECT with parallel-hole collimation, if attenuation can be ignored. Assuming 
that Λ(x,  y) represents the tracer distribution at transaxial slice Z through the 
patient, then Y(s, ϕ) represents the corresponding sinogram, and contains the z-th 
row of the projections acquired at angles ϕ. Figure 13.1 illustrates the relation 
between the projection and the sinogram.

The X ray transform has an adjoint operation that appears in both analytical 
and iterative reconstruction. This operator is usually called the back projection 
operator, and can be written as:
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The back projection is not the inverse of the projection, B(x, y) ≠ Λ(x, y). 
Intuitively, the back projection sends the measured activity back into the image 
by distributing it uniformly along the projection lines. As illustrated in Fig. 13.2, 
projection followed by back projection produces a blurred version of the original 
image. This blurring corresponds to the convolution of the original image with 
the 2‑D convolution kernel 2 21 / x y+ . 

FIG. 13.2.  The image (left) is projected to produce a sinogram (centre), which in turn is back 
projected, yielding a smoothed version of the original image.

13.2.1.2.	Central slice theorem

The central slice theorem gives a very useful relation between the 2‑D 
Fourier transform of the image and the 1‑D Fourier transform of its projections 
(along the detector axis). Consider the projection along the y axis, ϕ = 0, and its 
1‑D Fourier transform:
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and compare this to the 2‑D Fourier transform of the image Λ(x, y):
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Both expressions are equal if we set νy = 0:

(F1Y)(νs, 0) = (F2Λ)(νx, 0)	 (13.6) 

(F1Y)(νs, 0) is the 1‑D Fourier transform of the projection along the y axis and 
(F2Λ)(νx, 0) is a ‘central slice’ along the νx axis through the 2‑D Fourier transform 
of the image. Equation (13.6) is the central slice theorem for the special case of 
projection along the y axis. This result would still hold if the object had been 
rotated or equivalently, the x and y axes. Consequently, it holds for any angle ϕ:

(F1Y)(νs, ϕ) = (F2Λ)(νscos ϕ, νssin ϕ)	 (13.7)

13.2.1.3.	Two dimensional filtered back projection	  

The central slice theorem (Eq. (13.7)) can be directly applied to reconstruct 
an unknown image Λ(x, y) from its known projections Y(s, ϕ). The 1‑D Fourier 
transform of the projections provides all possible central slices through (F2Λ)
(νx, νy) if Y(s, ϕ) is known for all ϕ in an interval with a length of at least π (Tuy’s 
condition). Consequently, (F2Λ)(νx, νy) can be constructed from the 1‑D Fourier 
transform of Y(s, ϕ). Inverse 2‑D Fourier transform then provides Λ(x, y).

However, a basic Fourier method implementation with a simple 
interpolation in Fourier space does not work well. In contrast, in the case of the 
FBP algorithm derived below, a basic real-space implementation with a simple 
convolution and a simple interpolation in the back projection works well. Inverse 
Fourier transform of Eq. (13.5) yields:
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This can be rewritten with polar coordinates as:
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Application of the central slice theorem (Eq. (13.7)) and reversing the order 
of integration finally results in: 
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which is the FBP algorithm. This algorithm involves the following steps: 

(a)	 Apply 1‑D Fourier transform to Y(s, ϕ) to obtain (F1Y)(ν, ϕ);
(b)	 Filter (F1Y)(ν, ϕ) with the so-called ramp filter |ν|;
(c)	 Apply the 1‑D inverse Fourier transform to obtain the ramp filtered 

projections i2
1Ŷ( , ) ( )( , ) e  dss =∫ ΛF      ;

(d)	 Apply the back-projection operator Eq.  (13.2) to Ŷ( , )s   to obtain the 
desired image Λ(x, y). 

It should be noted that the ramp filter sets the DC component (i.e. the 
amplitude of the zero frequency) of the image to zero, while the mean value of 
the reconstructed image should definitely be positive. As a result, straightforward 
discretization of FBP causes significant negative bias. The problem is reduced 
with ‘zero padding’ before computing the Fourier transform with fast Fourier 
transform (FFT). Zero padding involves extending the sinogram rows with zeros 
at both sides. This increases the sampling in the frequency domain and results 
in a better discrete approximation of the ramp filter. However, a huge amount 
of zero padding is required to effectively eliminate the bias completely. The 
next paragraph shows how this need for zero padding can be easily avoided. It 
should be noted that after inverse Fourier transform, the extended region may be 
discarded, so the size of the filtered sinogram remains unchanged.

Instead of filtering in the Fourier domain, the ramp filtering can also be 
implemented as a 1‑D convolution in the spatial domain. For this, the inverse 
Fourier transform of |ν| is required. This inverse transform actually does not exist, 
but approximating it as the limit for ε → 0 of the well behaved function |ν|e–ε|ν| 

gives [13.3, 13.4]:
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In practice, band limited functions are always worked with, implying that the 
ramp filter has to be truncated at the frequencies ν = ±1/(2τ), where τ represents 
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the sampling distance. The corresponding convolution kernel  h then equals 
[13.3]:
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with b(ν)	= 1 if |ν| ≤ 1/(2τ)
	 = 0 if |ν| > 1/(2τ)

The kernel is normally only needed for samples s = nτ: h(nτ) = 1/(4τ2) if n = 0, 
h(nτ) = 0 if n is even and h(nτ) = –1/(nπτ)2 if n is odd. The filter can either be 
implemented as a convolution or the Fourier transform can be used to obtain 
a digital version of the ramp filter. Interestingly, this way of computing the 
ramp filter also reduces the negative bias mentioned above. The reason is that 
this approach yields a non-zero value for the DC component [13.3]. When the 
filtering is done in the frequency domain, some zero padding before FFT is still 
recommended because of the circular convolution effects, but far less is needed 
than with straightforward discretization of |ν|.

Although this is not obvious from the equations above, an algorithm 
equivalent to FBP is obtained by first back projecting Y(s, ϕ) and then applying a 
2‑D ramp filter to the back projected image B(x, y) [13.4]: 

0
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
    	 (13.14)

2 2
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This algorithm is often referred to as the ‘back project-then-filter’ algorithm.
FBP assumes that the projections Y(s, ϕ) are line integrals. As discussed in 

Chapter 11, PET and SPECT data are not line integrals because of attenuation, 
detector non-uniformities, the contribution of scattered photons and/or random 
coincidences, etc. It follows that one has to recover (good estimates of) the 
line integrals by pre-correcting the data for these effects. However, a particular 
problem is posed by the attenuation in SPECT because, different from PET, 
the attenuation depends on the position along the projection line, precluding 
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straightforward pre-correction. A detailed discussion of this problem is beyond 
the scope of this contribution, but three solutions are briefly mentioned here:

(a)	 If it can be assumed that the attenuation is constant inside a convex body 
contour, then FBP can be modified to correct for the attenuation. Algorithms 
have been proposed by Bellini, Tretiak, Metz and others; an algorithm is 
presented in Ref. [13.3].

(b)	 If the attenuation is not constant, an approximate correction algorithm 
proposed by Chang can be applied [13.5]. It is a post-correction method, 
applied to the image obtained without any attenuation correction. 
To improve the approximation, the attenuated projection of the first 
reconstruction can be computed, and the method can be applied again to the 
difference of the measurement and this computed projection.

(c)	 Finally, a modified FBP algorithm, compensating for non-uniform 
attenuation in SPECT, was found by Novikov in 2000. An equivalent 
algorithm was derived by Natterer [13.6]. However, because this algorithm 
was only found after the successful introduction of iterative reconstruction 
in clinical practice, it has not received much attention in the nuclear 
medicine community.

13.2.2.	 Frequency–distance relation

Several very interesting methods in image reconstruction, including Fourier 
rebinning, are based on the so-called frequency–distance relation, proposed 
by Edholm, Lewitt and Lindholm, and described in detail in Ref.  [13.7]. This 
is an approximate relation between the orthogonal distance to the detector and 
the direction of the frequency in the sinogram. The relation can be intuitively 
understood as follows. 

Consider the PET acquisition of a point source, as illustrated in Fig 13.3. 
Usually, the acquisition is described by rotating the projection lines while keeping 
the object stationary. However, here the equivalent description is considered, 
where projection is always along the y axis, and tomographic acquisition is 
obtained by rotating the object around the origin. Suppose that the point is located 
on the x axis when ϕ = 0. When acquiring the parallel projections for angle ϕ, 
the point has polar coordinates (r, ϕ), with r the distance from the centre of the 
field of view (FOV) and ϕ the angle with the x axis. The distance to the x axis 
is d = rsin ϕ. The corresponding sinogram Y(s, ϕ) is zero everywhere, except on 
the curve s = rcos ϕ (Fig. 13.3). The complete sinogram is obtained by rotating 
the point over 360° ϕ = –π…π. Consider a small portion of this curve, which can 
be well approximated as a tangential line segment near a particular point (s, ϕ), 
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as illustrated in Fig. 13.3. In the 2‑D Fourier transform of the sinogram, this line 
segment contributes mostly frequencies in the direction orthogonal to the line 
segment. This direction is represented by the angle α, given by: 

tan = ( cos ) = sin = .r r da φ φ
φ
∂ − −

∂
	 (13.16)

Thus, in the 2‑D Fourier transform (Fg) (νs, νϕ), the value at a particular 
point (νs, νϕ) carries mostly information about points located at a distance 
d = –tan α = –

 
νϕ/νs from the line through the centre, parallel to the detector. This 

relation can be exploited to apply distance dependent operations to the sinogram. 
One example is distance dependent deconvolution, to compensate for the distance 
dependent blurring in SPECT. Another example is Fourier rebinning, where data 
from oblique sinograms are rebinned into direct sinograms.

13.2.3.	 Fully 3‑D tomography

13.2.3.1.	Filtered back projection

Owing to the use of electronic collimation, the PET scanner can 
simultaneously acquire information in a 4‑D space of line integrals. These are 

ϕ

α

sα

s

r
ϕ

y

x

d

FIG. 13.3.  The frequency–distance principle. Left: sinogram; right: vertical projection of a 
point located at polar coordinates (r, ϕ).



458

CHAPTER 13

the so-called LORs, where each pair of detectors in coincidence defines a single 
LOR. In this section, the discrete nature of the detection is ignored, since the 
analytical approach is more easily described assuming continuous data. Consider 
the X ray transform in 3‑D, which can be written as:

ˆ ˆY( , ) ( ) dt t
∞

−∞
= +∫ Λu s s u 	 (13.17)

where the LOR is defined as the line parallel to û and through the point s. The 
vector û is a unit vector, and the vector s is restricted to the plane orthogonal to û, 
hence (û, s) is 4‑D. 

Most PET systems are either constructed as a cylindrical array of detectors 
or as a rotating set of planar detector arrays and, therefore, have cylindrical 
symmetry. For this reason, the inversion of Eq.  (13.17) is studied for the case 
where û is restricted to the band 

0θ
Ω on the unit sphere, defined by 0  sinzu θ≤ , 

as illustrated in Fig. 13.4. It should be noted that only half of the sphere is actually 
needed because Y(û, s) = Y(–û, s), but working with the complete sphere is more 
convenient. 

FIG. 13.4.  Each point on the unit sphere corresponds to the direction of a parallel projection. 
An ideal rotating gamma camera with a parallel-hole collimator only travels through the 
points on the equator. An idealized 3‑D PET system would also acquire projections along 
oblique lines; it collects projections for all points of the set Ω. The set Ω, defined by θ0, is 
the non-shaded portion of the unit sphere. To recover a particular frequency ν (of the Fourier 
transform of the object), at least one point on the circle Cν is required.

With θ0 = 0, the problem reduces to 2‑D parallel projection (for multiple 
slices), which was shown to have a unique solution. It follows that with 
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|θ0| > 0, the problem becomes overdetermined, and there are infinitely many ways 
to compute the solution. This can be seen as follows. Each point of Ω corresponds 
to a parallel projection. According to the central slice theorem, this provides a 
central plane perpendicular to û of the 3‑D Fourier transform L(ν) of Λ(x). Thus, 
the set Ω0 (i.e. all points on the equator of the unit sphere in Fig. 13.4) provides 
all planes intersecting the νz axis, which is sufficient to recover the entire image 
Λ(x) via inverse Fourier transform. The set Ω0 with θ0 > 0 provides additional 
(oblique) planes through L(ν), which are obviously redundant. A simple solution 
would be to select a sufficient subset from the data. However, if the data are 
noisy, a more stable solution is obtained by using all of the measurements. This 
is achieved by computing L(ν) from a linear combination of all available planes:

0

ˆ ˆ ˆ ˆ( ) ( , )H( , ) ( , ) d=∫ δ
Ω

L Y


u u u u    	 (13.18)

Here, ˆ( , )Y u ν  is the 2‑D Fourier transform with respect to s of the projection 
ˆY( , )u s . The Dirac function ˆ( , )δ u ν  selects the parallel projections û which are 

perpendicular to ν (i.e. the points on the circle Cν in Fig. 13.4). Finally, the filter 
ˆH( , )u ν  assigns a particular weight to each of the available datasets ˆ( , )Y u ν . The 

combined weight for each frequency should equal unity, leading to the filter 
equation:

0

ˆ ˆ ˆH( , ) ( , ) d 1=∫ δ
Ω

u u u  	 (13.19)

A solution equivalent to that of unweighted least squares (LS) is obtained by 
assigning the same weight to all available data [13.8]. This results in the Colsher 
filter which can be written as: 
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where ψ is the angle between ν and the z axis: νz/|ν| = cos ψ. The direct Fourier 
reconstruction method can be applied here, by straightforward inverse Fourier 
transform of Eq. (13.18). However, an FBP approach is usually preferred, which 
can be written as: 

0

Fˆ ˆ ˆ ˆ( ) d Y ( , ( ) )= − ⋅∫Ω
Λ



x u u x x u u 	 (13.21)
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Here, YF is obtained by filtering Y with the Colsher filter (or another filter 
satisfying Eq.  (13.19): F 1

Cˆ ˆ ˆY ( , ) (H ( , ) ( , ))−=F Yu s u u  . The coordinate 
ˆ ˆ( )= − ⋅s x x u u  is the projection of the point x on the plane perpendicular to û; it 

selects the LOR through x in the parallel projection û. 

13.2.3.2.	The reprojection algorithm

The previous analysis assumed that the acceptance angle θ0 was a constant, 
independent of x. As illustrated in Fig. 13.5, this is not the case in practice. The 
acceptance angle is maximum for the centre of the FOV, becomes smaller with 
increasing distance to the centre and vanishes near the axial edges of the FOV. In 
other words, the projections are complete for û orthogonal to the z axis (these are 
the 2‑D multislice parallel-beam projections) and are truncated for the oblique 
parallel projections. The truncation becomes more severe for more oblique 
projections (Fig. 13.5). 

(a) (c)(b)

FIG. 13.5.  An axial cross-section through a cylindrical PET system, illustrating that the 
acceptance angle is position dependent (a). Oblique projections are truncated (b). In the 
reprojection algorithm, the missing oblique projections (dashed lines) are computed from a 
temporary multislice 2‑D reconstruction (c).

As the acceptance angle is position dependent, the required filtering 
is position dependent as well, and cannot be implemented as a shift-invariant 
convolution (or Fourier filter). Several strategies for dealing with this truncation 
have been developed. One approach is to subdivide the image into a set of 
regions, and then optimize a shift-invariant filter in each of the regions. The filter 
is determined by the smallest acceptance angle of the region, so some of the data 
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will not be used. A good compromise between minimum data loss and practical 
implementation must be sought [13.9].

Another approach is to start with a first reconstruction, using the smallest 
acceptable angle over all positions x in the FOV. This usually means that only 
the parallel projections orthogonal to the z axis are used. The missing oblique 
projection values are computed from this first reconstruction (Fig. 13.4) and used 
to complete the measured oblique projections. This eliminates the truncation, and 
the 3‑D FBP method of the previous section can be applied. This method [13.10] 
was the standard 3‑D PET reconstruction method for several years, until it was 
replaced by the faster Fourier rebinning approach (see below).

13.2.3.3.	Rebinning techniques

The complexity (estimated as the number of LORs) increases linearly 
with the axial extent for 2‑D PET, but quadratically for 3‑D PET. To keep the 
processing time acceptable, researchers have sought ways to reduce the size of 
the data as much as possible, while minimizing the loss of information induced 
by this reduction.

Most PET systems have a cylindrical detector surface: the detectors are 
located on rings with radius R, and the rings are combined in a cylinder along the 
z axis. The data are usually organized in sinograms which can be written as:

P ˆ ˆ ˆY ( , , , ) d ( cos , sin , )z x y zs z t s tu s tu z tu
∞

−∞
∆ = + + +∫ Λ   	 (13.22)

where û is a unit vector in the direction of the LOR:

2 2ˆ /     with    ( sin ,cos , / (2 ))z R s= = − ∆ − u u u u 

The parameter s is the distance between the LOR and the z axis. The LOR 
corresponds to a coincidence between detector points with axial positions z – Δz/2 
and z + Δz/2. Finally, ϕ is the angle between the y axis and the projection of the 
LOR on the xy plane. The coordinates (s, ϕ, z) are identical to those often used in 
2‑D tomography. It should be noted that, in practice, s ≪ R and, as a result, the 
direction of the LOR, the vector û, is virtually independent of s. In other words, 
a set of LORs with fixed Δz can then be treated as a parallel projection with good 
approximation. LORs with Δz = 0 are often called ‘direct’ LORs, while LORs 
with Δz ≠ 0 are called ‘oblique’.

The basic idea of rebinning algorithms is to compute estimates of the 
direct sinograms from the oblique sinograms. If the rebinning algorithm is good, 
most of the information from the oblique sinograms will go into these estimates. 
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As a result, the data have been reduced from a complex 3‑D geometry into a 
much simpler 2‑D geometry without discarding measured signal. The final 
reconstruction can then be done with 2‑D algorithms, which tend to be much 
faster than fully 3‑D algorithms. A popular approach is to use Fourier rebinning, 
followed by maximum-likelihood reconstruction.

13.2.3.4.	Single slice and multislice rebinning

The simplest way to rebin the data is to treat oblique LORs as direct LORs 
[13.11]. This corresponds to the approximation: 

P PY ( , , , ) Y ( , , ,0)zs z s z∆ ≈  	 (13.23)

The approximation is only exact if the object consists of points located on 
the z axis, and it introduces mis-positioning errors that increase with increasing 
distance to the z axis and increasing Δz. Consequently, single slice rebinning is 
applicable when the object is small and positioned centrally in the scanner or 
when Δz is small. The axial extent of most current PET systems is too large to 
rebin an entire 3‑D dataset with Eq. (13.23). However, single slice rebinning is 
used on all PET systems to reduce the sampling of the Δz dimension in the 3‑D 
data, by combining sinograms with similar Δz. This typically reduces the data 
size by a factor of about ten, when compared to the finest possible sampling.

Application of Eq.  (13.23) obviously causes blurring in the z direction, 
to a degree proportional to the distance from the z axis. However, it may also 
cause severe inconsistencies in the sinograms, producing blurring artefacts 
in the xy planes of the reconstructed images as well. Lewitt et al. [13.12] 
proposed distributing the oblique LOR values PY ( , , , )zs z ∆  over all LORs 
with f f[ / (2 ), / (2 )]z zz z R R z R R∈ −∆ +∆ , i.e. over all slices intersected by the 
LOR, and within an FOV with radius Rf. This so-called multislice rebinning 
reduces the inconsistencies in the sinograms, eliminating most of the xy blurring 
artefacts in the reconstruction. Unfortunately, the improvement comes at the cost 
of strong axial blurring. This blurring depends strongly on z, but it is found to be 
approximately independent of x and y. A z-dependent 1‑D axial filter is applied to 
reduce this axial blurring [13.12]. Multislice rebinning is superior to single slice 
rebinning, but the noise characteristics are not optimal.
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13.2.3.5.	Fourier rebinning

Fourier rebinning [13.13] is based on the frequency–distance principle, 
which was explained previously. The Fourier rebinning method is most simply  
formulated when the projection is written as follows: 

Y( , , , ) d ( cos sin , sin cos , )s z t s t s t z t
∞

−∞
= − + +∫ Λ       	 (13.24)

where

δ = tan θ;
θ 	 is the angle between the LOR and the xy plane;

and the integration variable t is the distance between the position on the LOR and 
the z axis. 

It follows that:

2 2
P

2

Y ( , , , 2 )
Y( , , , )

1
zs z R s

s z
∆ = −

=
+

 
 


	 (13.25)

P
2

Y ( , , , 2 )

1
zs z R∆ =

≈
+

 


	 (13.26)

where the approximation is valid whenever s ≪ R. In this case, no interpolation 
is needed; it is sufficient to scale the PET data YP with the weight factor 21 δ+ .

Fourier rebinning uses the frequency–distance principle to find the 
distance d corresponding to a particular portion of the oblique sinogram. As 
illustrated in Fig. 13.6, distance is used to locate the direct sinogram to which this 
portion should be assigned. Denoting the 2‑D Fourier transform of Y with respect 
to s and ϕ as Y, this can be written as: 

 
( , , , ) ( , , ,0)s s

s

z z≈ − 
 


     


Y Y 	 (13.27)

This equation explains how to distribute frequency components from a particular 
oblique sinogram into different direct sinograms. Frequencies located on the line 
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s=φ   in the oblique sinogram z can be assigned to that same line in the direct 
sinogram z + dδ.

The final rebinning algorithm (often called ‘FORE’) is obtained by 
averaging all of the available estimates of the direct sinogram:

max

s
0max

s

1
( , , ,0) ( , , , )     if     0

                    (0,0, ,0)                                            if     0, 0

                    0                           

s s
s

z d z

z

≈ +

≈ ≈ ≈

≈

∫ �
δ

Y Y

Y




 




       


 

                                if     / s fR> 

	 (13.28)

It should be noted that the rebinning expression is only valid for large νs. 
In the low frequency range, only the direct sinogram is used. The last line of 
Eq. (13.28) holds because the image Λ(x, y, z) is assumed to be zero outside the 
FOV 2 2 > fx y R+ .

A more rigorous mathematical derivation of the frequency–distance 
relation is given in Ref. [13.14]. Alternative derivations based on exact rebinning 
expressions are given in Ref. [13.13].

νϕ
νs

FIG. 13.6.  Fourier rebinning: the distance from the rotation axis is obtained via the frequency–
distance principle. This distance is used to identify the appropriate direct sinogram.
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After Fourier rebinning, the resulting 2‑D dataset can be reconstructed 
with any 2‑D reconstruction algorithm. A popular method is the combination of 
Fourier rebinning with a 2‑D statistical reconstruction algorithm.

13.2.3.6.	Exact rebinning methods

Fourier rebinning is an approximate method, but was found to be sufficiently 
accurate for apertures up to θ0 = 25°, and it is, therefore, largely sufficient for 
most current PET systems. However, there is a tendency towards still larger 
acceptance angles, and a more exact Fourier rebinning algorithm may be needed 
in the future. An example of an ‘exact’ rebinning algorithm is FOREX [13.13]. It 
is exact in the sense that the rebinning expression is exact for the continuous 3‑D 
X ray transform.

According to the central section theorem, the 2‑D Fourier transform of a 
projection Y(s, ϕ, z, δ) equals a cross-section through the 3‑D Fourier transform 
of the image Λ(x, y, z):

13( , , , ) ( cos sin , sin cos , )s z s z s z z= + −Y L               	 (13.29)

The subscript of Y13 denotes a Fourier transform with respect to s and z. Defining: 

arctan( / )z s=σ  

2 2 2' 1s s z sv= +   

Equation (13.29) can be rewritten as:

13( , , , ) ( ' cos( ), ' sin( ), )s z s s z= − −σ σY L         	 (13.30)

Taking the 1‑D Fourier transform with respect to ϕ yields:

2

123
0

( , , , ) e e ( ' cos , ' sin , ) di i
s z s s z

− −= ∫σY L 
  

           	 (13.31) 

By comparing the expressions for 123( , , , )s zY      and 123( , , ,0)s zY    , one 
finally obtains:

123 123( , , , ) ( ' , , ,0)i
s z s ze−= σY Y

        	 (13.32)

A problem of FOREX is that it needs the 1‑D Fourier transform along z, which 
cannot be computed for truncated projections. Similar as with 3‑D filtered back 
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projection, the problem can be avoided by completing the truncated projections 
with synthetic data. Fortunately, Eq. (13.32) can be used in both ways, and allows 
estimation of (missing) oblique sinograms from the available direct sinograms. 
The resulting algorithm is slower than FORE, but still considerably faster than 
3‑D FBP with reprojection.

13.2.4.	 Time of flight PET

In time of flight (TOF) PET, the difference in arrival time of the two 
detected photons is used to estimate the position of their emission along the 
LOR. The uncertainty in the time estimation results in a similar uncertainty in the 
position estimation, which can be well modelled as a Gaussian distribution. As 
a result, the TOF projections correspond to Gaussian convolutions along lines, 
rather than to line integrals, as illustrated in Fig. 13.7. 

FIG. 13.7.  Time of flight projection can be well modelled as a 1‑D Gaussian convolution in 
the direction of the line of response.

The corresponding TOF back projection corresponds to convolving the 
measured data with the same 1‑D Gaussians, followed by summation over all 
angles.

Recall from Eq. (13.2) that the regular projection followed by the regular 
back projection corresponds to a convolution with a blurring filter:

nonTof 2 2

1
( , )B x y

x y
=

+
	 (13.33)
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The Fourier transform of 2 21/ x y+  equals 2 21 / .x y+   Consequently, this 

blurring can be undone by the ramp filter 2 2
x y+  , which can be applied either 

before or after back projection (see Section 13.2.1).

If σTOF is the standard deviation of the TOF-blurring kernel, then TOF 
projection followed by TOF back projection corresponds to convolution with the 
blurring kernel:

Tof
TOF

2 2

Gauss ( , , 2 )
( , )

x y
B x y

x y
=

+

σ 	 (13.34)

2 2

22 2
TOFTOF

1 1
exp

42
x y

x y

 +  = −   + σσ
	 (13.35)

It should be noted that the Gaussian in the equation above has a standard deviation 
of TOF2σ . This is because the Gaussian blurring is present in the projection 
and in the back-projection. The filter required in TOF PET FBP is derived by 
inverting the Fourier transform of BTOF, and equals: 

2 2 2 2 2 2
TOF 0 TOF

1
TOF_recon_filter ( ) 

exp( 2 ) (2 )I
=

− σ σ


     	 (13.36)

where 0I  is the zero order modified Bessel function of the first kind.

This FBP expression is obtained by using the ‘natural’ TOF back projection, 
defined as the adjoint of the TOF projection. This back projection also appears in 
LS approaches, and it has been shown that with this back projection definition, 
FBP is optimal in an (unweighted) LS sense [13.15]. However, TOF PET data 
are redundant and different back projection definitions could be used; they would 
yield different expressions for BTOF(x, y) in Eq. (13.34) and, therefore, different 
TOF reconstruction filters.

Just as for non-TOF PET, exact and approximate rebinning algorithms for 
TOF PET have been derived to reduce the data size. As the TOF information 
limits the back projection to a small region, the errors from approximate rebinning 
are typically much smaller than in the non-TOF case.
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13.3.	ITERATIVE RECONSTRUCTION

13.3.1.	 Introduction

13.3.1.1.	Discretization

In analytical reconstruction, it is initially assumed that the unknown object 
can be represented as a function ( )x

�Λ  with 3x∈
� R , and that the acquired data 

can be represented as a function Y(s, θ) with 2s∈R  and θ a unit vector in 2R  
or 3R . The reconstruction algorithm is then derived by mathematical inversion 
(assuming some convenient properties for Λ and Y), and finally the resulting 
algorithm is discretized to make it ready for software implementation. In iterative 
reconstruction, one usually starts by discretizing the problem. This reduces the 
reconstruction problem to finding a finite set of unknown values from a finite 
set of equations, a problem which can be solved with numerical inversion. 
The advantage of numerical inversion is that only a model for the acquisition 
process is needed, not for its inverse. That makes it easier (although it may still 
be non-trivial) to take into account some of the undesired but unavoidable effects 
that complicate the acquisition, such as photon attenuation, position dependent 
resolution, gaps between the detectors and patient motion.

After discretization, the unknown image values and the known measured 
values can be represented as column vectors λ and y. The PET or SPECT 
acquisition process is characterized by the system matrix A and an additive 
contribution b , and n is the measurement noise:

 

1

     or     ,      1,...,
J

i ij j i i
j

i I
=

= + + = + + =∑y A b n y A b n  	 (13.37)

The symbol yi denotes the number of photons measured at LOR i, where the 
index i runs over all of the sinogram elements (merging the three or four sinogram 
dimensions into a single index). The index j runs over all of the image voxels, 
and Aij is the probability that a unit of radioactivity in j gives rise to the detection 
of a photon (SPECT) or photon pair (PET) in LOR i. The estimate of the additive 
contribution is denoted as b . This estimate is assumed to be noise-free and 
includes, for example, scatter and randoms in PET or cross-talk between different 
energy windows in multitracer SPECT studies. Finally, ni represents the noise 
contribution in LOR i.

Image reconstruction now consists of finding λ, given A, y and b , and a 
statistical model for n.
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For further reading about this subject, the recent review paper on iterative 
reconstruction by Qi and Leahy [13.16] is an ideal starting point.

13.3.1.2.	Objective functions

The presence of the noise precludes exact reconstruction. For this reason, 
the reconstruction is often treated as an optimization task: it is assumed that a 
useful clinical image can be obtained by maximizing a well chosen objective 
function. When the statistics of the noise are known, a Bayesian approach can be 
applied, searching for the image l̂  that maximizes the conditional probability on 
the data:

 ˆ argmax ( | )

( | ) ( )
   argmax

( )

   argmax ( | ) ( )

p

p p
p

p p

=

=

=

λ y

y
y

y









 

 

	 (13.38)

    argmax(ln ( | ) ln ( ))p p= +y


  	 (13.39)

The second equation is Bayes’ rule. The third equation holds because y does not 
depend on λ, and the fourth equation is valid because computing the logarithm 
does not change the position of the maximum. The probability p(y|λ) gives the 
likelihood of measuring a particular sinogram y, when the tracer distribution 
equals λ. This distribution is often simply called the likelihood. The probability 
p(λ) represents the a priori knowledge about the tracer distribution, available 
before PET or SPECT acquisition. This probability is often called the prior 
distribution. The knowledge available after the measurements equals p(y|λ)p(λ) 
and is called the posterior distribution. To keep things simple, it is often assumed 
that no prior information is available, i.e. p(λ|y) ∝ p(y|λ). Finding the solution 
then reduces to maximizing the likelihood p(y|λ) (or its logarithm). In this 
section, maximum-likelihood algorithms are discussed. Maximum a posteriori 
(MAP) algorithms are discussed in Section 13.3.5, as a strategy to suppress noise 
propagation.

A popular approach to solve equations of the form of Eq.  (13.37) is LS 
estimation. This is equivalent to a maximum-likelihood approach, if it is assumed 
that the noise is Gaussian with a zero mean and a fixed, position independent 
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standard deviation σ. The probability to measure the noisy value yi when the 
expected value was A bij j i

j

l +∑ then equals: 

p i ij j i

i ij j i
j

LS( | ) exp

( ( ))

y A b

A b

l

l

+ = −

− +





∑
1

2 2

2

2πσ σ

y 





∑
j

	 (13.40)

As the noise in the sinogram is not correlated, the likelihood (i.e. the probability 
of measuring the entire noisy sinogram y) equals: 

 
LS LS LS( ) ( ) ( | )i ij j i

i j

p p p= + = +∑∏| |y y A b y A b   	 (13.41)

It is more convenient to maximize the logarithm of pLS; dropping constants, the 
objective function LLS is finally obtained: 

 2
LS ( ( )) ( ( ))'( ( ))i ij j i

i j

L =− − + =− − + − +∑ ∑ y A b y A by A b    	 (13.42)

where the prime denotes matrix transpose. Setting the first derivatives with 
respect to λj to zero for all j gives:

1

'( ) 0

( ' ) '( )−

− − =

−

A y A b

A A A y b




	 (13.43)

provided that 'A A  is non-singular. The operator AA   is the discrete projection; its 
transpose 'A  is the discrete back projection. Its analytical counterpart was given 
in Eq. (13.2) and illustrated in Fig. 13.1. The same figure shows that the operator

'A A  behaves as a blurring filter. 

λ Aλ Aꞌ Aλ

FIG. 13.8.  The image of point sources is projected and back projected again along ideal 
parallel beams. This yields a shift-invariant blurring.
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Figure 13.8 is similar, but illustrates A  and 'A A  on an image of three point 
sources, using ideal parallel-beam projection. The figure shows the resulting point 
spread functions of 'A A  for each of the point sources. They are identical: for ideal 
parallel-beam projection, 'A A  is shift-invariant, equivalent to a convolution. It 
follows that 1( ' )−A A  is the corresponding shift-invariant deconvolution, which 
is easily computed via the Fourier transform. In this situation, LS reconstruction 
(Eq. (13.43)) is the discrete equivalent of the ‘back project-then-filter’ algorithm 
(Eq. (13.15)), applied to the data after pre-correction for b .

Figure 13.9 illustrates A  and 'A A  for a projector that models the position 
dependent blurring of a typical parallel-beam SPECT collimator. The blurring 
induced by 'A A  is now shift-variant — it cannot be modelled as a convolution 
and its inverse cannot be computed with the Fourier transform. For real life 
problems, direct inversion of 'A A  is not feasible. Instead, iterative optimization 
is applied to find the maximum of Eq. (13.42). 

λ Aλ Aꞌ Aλ

FIG. 13.9.  The image of point sources is projected and back projected again with collimator 
blurring. This yields a shift-variant blurring.

It is known that the number of detected photons is subject to Poisson noise, 
not to uniform Gaussian noise. The Poisson distribution can be well approximated 
with a Gaussian distribution, where the variance of the Gaussian equals its mean. 
With this approximation, σ must be replaced by σi in Eq.  (13.40) because now 
there is a different Gaussian distribution for every sinogram pixel i. Proceeding 
as before, the weighted least squares (WLS) objective function is: 

 2

WLS 2

1

( ( ))

        ( ( ))' ( ( ))

i ij j i
j

ii

L

−

− +

=−

=− − + − +

∑
∑ σ

y Aλ b C y Aλ b

y A λ b

y

	 (13.44)

where Cy is the covariance matrix of the data. 
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For emission tomography, it is a diagonal matrix (all covariances are zero) 
with elements Cy[i, i] = σi

2. The corresponding WLS reconstruction can be written 
as:

1 1 1( ' ) ' ( )− − −= −A C A A C y b y y 	 (13.45)

The operator 1' −A C Ay is always shift-variant, even for ideal parallel-beam 
tomography. This is illustrated in Fig.  13.10. The noise-free sinogram y  is 
computed for a particular activity distribution. Setting Cy = diag ( y ), the operator 

1' −A C Ay can be analysed by applying it to the image of a few point sources, 
called x in the figure. The image x is projected, the sinogram Ax  is divided by 
y  on a pixel basis and the result is back projected. Clearly, position dependent 

blurring is obtained. Consequently, iterative optimization must be used for WLS 
reconstruction. 

Emission image y x

Ax Cy
–1Ax A'Cy

–1Ax

FIG. 13.10.  The operator AC Ay'
1−  is derived for a particular activity distribution (top left) 

and then applied to a few point sources x. Although ideal parallel-beam projection was used, 
shift-variant blurring is obtained.

In practice, because there is only a noisy sinogram y, the noise-free 
sinogram y  must be estimated to find Cy. There are basically two approaches. 
In the first approach, y  is estimated from y, e.g. by smoothing y to suppress 
the noise. In the second approach, y  is estimated as ( )k +A b  during the 
iterative optimization, where λ(k) is the estimate of the reconstruction available at 
iteration k. A drawback of the first approach is that the noise on the data affects 
the weights, with a tendency to give higher weight when the noise contribution 
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happens to be negative. A complication of the second approach is that it makes 
σi a function of λ. In this case, the normalizing amplitude 1/ ( 2 )iπσ  of the 
Gaussians cannot be dropped, implying that an additional term ln i

i

−∑ σ  should 
be added to Eq. (13.44).

It is possible to use the Poisson distribution itself, instead of approximating 
it with Gaussians. The probability of the noise realization yi then becomes: 

 ( )
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( | )
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ij j i
j i

ij j i
j

i ij j i
ij

e

p

− +

+

+ =

∑
∑

∑
y

A b

A b

y A b
y





 	 (13.46)

Proceeding as before, the log-likelihood function is: 

 
LSln ( | ) ln( ) ( ) ln !i ij j i i ij j i ij j i i

i j i j j

p
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ML ln( ) ( )i ij j i ij j i

i j j

L = + − +∑ ∑ ∑y A b A b  	 (13.47)

It should be noted that the term  ln yi! can be dropped, because it is not a function 
of λ. As LML is a non-linear function of λ, the solution cannot be written as a 
product of matrixes. However, it is sometimes helpful to know that the features 
of the Poisson-objective function are often very similar to those of the WLS 
function (Eq. (13.44)).

13.3.2.	 Optimization algorithms

Many iterative reconstruction algorithms have been proposed to optimize 
the objective functions LWLS and LML. Here, only two approaches are briefly 
described: preconditioned conjugate gradient methods and optimization transfer, 
with expectation maximization (EM) as a special case of the latter.

13.3.2.1.	Preconditioned gradient methods

The objective function will be optimized when its first derivatives are zero: 

 ˆ i ij j i
i

= +∑y A b 	 (13.48)
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The optimization can be carried out by a steepest ascent method, which can be 
formulated as follows: 
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where the superscripts k and k–1 denote the iteration numbers and ∇LL is the 
vector of the first derivatives of L with respect to λj.

Steepest gradient ascent is known to be suboptimal, requiring many 
iterations for reasonable convergence. To find a better update, it is required that 
after the update, the first derivatives of L are zero as intended. Approximating 
this with a first order Taylor expansion yields:
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	 (13.52)

where the Hessian H is the matrix of second derivatives of L. This is obviously a 
very large matrix, but its elements are relatively easy to compute:

for WLS: 
 1

2 ( ' )[ , ]ij ik
jk

ii

j k−=− =−∑ σ yA C A
A A

H 	 (13.53)

for ML: 
 

2 ˆˆ
ij ik i ij ik
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iii i
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	 (13.54)

1 ˆ       ( ' )[ , ]     if     j k−≈− ≈yA C A y y 	 (13.55)
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For a Gaussian likelihood, Eq. (13.52) is in fact exact, and a single iteration 
would suffice. As shown before, however, it is usually impossible to compute 
H–1. Instead, approximations to the Hessian (or other heuristics) can be used to 
obtain a good M to derive a so-called preconditioned gradient ascent algorithm: 

1

1

( )k k

k k k
k

−

−
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= +

d

Md


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L
	 (13.56)

To ensure that the convergence is preserved, the matrix M must be symmetric 
positive definite (it should be noted that –H–1 is symmetric positive definite, 
since H is symmetric negative definite, if A has maximum rank).

A simple way to obtain a reasonable M is to use only the diagonal elements 
of H: Mii = –1/Hii and Mij = 0 if i ≠ j. A more sophisticated approach is discussed 
in Ref.  [13.17]: a circulant, i.e. shift-invariant approximation of the Hessian is 
proposed. Such an approximation is easily computed by fixing j at a particular 
location in the image in Eqs  (13.53) or (13.54), which yields an image that 
can be considered as the point spread function of a convolution operator. This 
shift-invariant operator is then inverted via the Fourier transform, yielding 
a non-diagonal matrix M. For cases where the true Hessian depends heavily 
on position, the approach could be repeated for a few well chosen positions j, 
applying linear interpolation for all other positions.

13.3.2.2.	Conjugate gradient methods

Figure 13.11 shows the convergence of the steepest gradient ascent algorithm 
for a nearly quadratic function of two variables. In every iteration, the algorithm 
starts moving in the direction of the maximum gradient (i.e. perpendicular to the 
isocontour), and keeps moving along the same line until a maximum is reached 
(i.e. until the line is a tangent to the isocontour). This often leads to a zigzag line, 
requiring many iterations for good convergence.

The conjugate gradient algorithm is designed to avoid these oscillations 
[13.18]. The first iteration is identical to that of the steepest gradient ascent. 
However, in the following iterations, the algorithm attempts to move in a direction 
for which the gradient along the previous direction(s) remains the same (i.e. equal 
to zero). The idea is to eliminate the need for a new optimization along these 
previous directions. Let dold be the previous direction and H the Hessian matrix 
(i.e. the second derivatives). It is now required that the new direction dnew be such 
that the gradient along dold does not change. When moving in direction dnew, the 
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gradient will change (using a quadratic approximation) as Hdnew. Requiring that 
the resulting change along dold is zero yields the condition: 

old new' 0=d Hd  	 (13.57)

This behaviour is illustrated by the dashed line in Fig. 13.11: in the second 
iteration, the algorithm moves in a direction such that the trajectory cuts the 
isocontours at the same angle as in the starting point. For a quadratic function 
in n dimensions, convergence is obtained after no more than n iterations. As the 
function in Fig. 13.11 is not quadratic, more than two iterations are required for 
full convergence.

The new direction can be easily computed from the previous ones, without 
computation of the Hessian H . The Polak–Ribiere algorithm is given by [13.18]:
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FIG. 13.11. The dotted lines are isocontours of the objective function. The solid line shows 
the convergence of the steepest gradient ascent algorithm, the dashed line the convergence of 
conjugent gradient ascent. It should be noted that the starting points are equivalent because 
of the symmetry. The objective function equals , with p = 2.15. 
 
 
 The conjugate gradient algorithm is designed to avoid these oscillations [13.18]. The first 
iteration is identical to that of the steepest gradient ascent. However, in the following 
iterations, the algorithm attempts to move in a direction for which the gradient along the 
previous direction(s) remains the same (i.e. equal to zero). The idea is to eliminate the need 
for a new optimization along these previous directions. Let dold be the previous direction and 
H the Hessian matrix (i.e. the second derivatives). It is now required that the new direction 
dnew be such that the gradient along dold does not change. When moving in direction dnew, the 
gradient will change (using a quadratic approximation) a Hdnew. Requiring that the resulting 
change along dold is zero yields the condition:  
 
                                                                                                           (13.57) 
 
This behaviour is illustrated by the dashed line in Fig. 13.11: in the second iteration, the 
algorithm moves in a direction such that the trajectory cuts the isocontours at the same angle 
as in the starting point. For a quadratic function in n dimensions, convergence is obtained 
after no more than n iterations. As the function in Fig. 13.11 is not quadratic, more than two 
iterations are required for full convergence. 
 The new direction can be easily computed from the previous ones, without computation of 
the Hessian H . The Polak–Ribiere algorithm is given by [13.18]: 
 

0 0( | | | | )p pa x x b y y   

' = 0.old newd H d

FIG. 13.11.  The dotted lines are isocontours of the objective function. The solid line shows 
the convergence of the steepest gradient ascent algorithm, the dashed line the convergence of 
conjugent gradient ascent. It should be noted that the starting points are equivalent because of 
the symmetry. The objective function equals 0 0( | | | | )p pa x x b y y− − + − , with p = 2.15.
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This algorithm requires storage of the previous gradient gold and the 
previous search direction dold. In each iteration, it computes the new gradient and 
search direction, and applies a line search along the new direction.

13.3.2.3.	Preconditioned conjugate gradient methods

Both techniques mentioned above can be combined to obtain a fast 
reconstruction algorithm, as described in Ref.  [13.17]. The preconditioned 
conjugate gradient ascent algorithm (with preconditioning matrix M) can be 
written as follows:
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13.3.2.4.	Optimization transfer

The log-likelihood function (Eq. (13.47)) can be maximized by setting its 
gradients (Eq. (13.50)) to zero for all j = 1…J. A problem is that each of these 
derivatives is a function of many voxels of λ, which makes the set of equations 
very hard to solve. The idea of ‘optimization transfer’ is to replace the problematic 
log-likelihood function with another function Φ(λ) that leads to a simpler set of 
equations, usually one where the derivative with respect to λj is only a function 
of λj and not of the other voxels of λ. That makes the problem separable into 
J 1‑D optimizations, which are easily solved. Ideally, Φ and L should have the 
same optimum, but that is asking for too much. The key is to design Φ(λ) in 
such a way that maximization of Φ(λ) is guaranteed to increase L(λ). This leads 
to an iterative algorithm, since new functions Φ will have to be designed and 
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maximized repeatedly to maximize L. At iteration k, the surrogate function Φ(λ) 
needs to satisfy the following conditions (illustrated in Fig. 13.12):

( ) ( )( ) ( )k k=Φ  L 	 (13.60)

( ) ( )≤Φ X XL 	 (13.61)

L

Φ

λ λ
λ

Likelihood

Current New

FIG. 13.12.  Optimization transfer: a surrogate function is designed, which is equal to the 
likelihood in the current reconstruction, and less or equal everywhere else.

It follows that the new reconstruction image λ(k+1) which maximizes Φ(λ) 
has a higher likelihood than λ(k): 

( ) ( ) ( 1) ( 1)( ) ( ) ( ) ( )k k k k+ += ≤ ≤Φ Φ   L L 	 (13.62)

Several algorithms for maximum-likelihood and MAP reconstruction in emission 
and transmission tomography have been developed with this approach. De 
Pierro [13.19] has shown how the well known maximum-likelihood expectation-
maximization (MLEM) algorithm can be derived using the optimization transfer 
principle. He also showed how this alternative derivation provides a natural way 
to extend it to an MAP algorithm.
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13.3.3.	 Maximum-likelihood expectation-maximization

13.3.3.1.	Reconstruction from sinogram data

There are many ways to derive the MLEM algorithm, including the original 
statistical derivation by Shepp and Vardi [13.20] (based on the work by Dempster 
et al. [13.21]) and the optimization transfer approach by De Pierro [13.19]. Only 
the EM recipe is given below.

Recall that we wish to find the image λ that maximizes the likelihood 
function LML of Eq. (13.47). The EM does this in a remarkable way. Instead of 
concentrating on LML, an alternative (different) likelihood function is derived by 
introducing a set of so-called ‘complete data’ xij, defined as the number of photons 
that were emitted at voxel j and detected in LOR i during the measurement. 
These unobserved data are ‘complete’ in the sense that they describe in more 
detail than the observed data yi what happened during the measurement. These 
variables xij are Poisson distributed. Just as for the actual data yi, one can write the 
log-likelihood function for observing the data xij while  ij ij j=x A   were expected:

 ( ) ln( )x ij ij j ij j
i j

L = −∑∑ x A A   	 (13.63)

However, this likelihood cannot be computed, because the data xij are not 
available. The emission measurement only produces sums of the complete data, 
since:

i ij ij i
j

= +∑y A x b 	 (13.64)

where bi represents the actual (also unobserved) additive contribution bi in LOR i.

The EM recipe prescribes computing the expectation of Lx, based on the 
available data and on the current reconstruction λ(k). Based on the reconstruction 
alone, one would write  ( )( )( | ) kk

ij ij jE =x A  . However, it is also known that 
xij should satisfy Eq.  (13.64). It can be shown that this leads to the following 
estimate: 
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( | , ) kk i
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ij j i
j

E =
+∑
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x A
A b

 


	 (13.65)

where ib  is the noise-free estimate of bi, which is assumed to be available. 
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Inserting this in Eq. (13.63) produces the expectation of Lx(λ) and completes 
the expectation (E) step. For the maximization (M) step, the first derivatives are 
simply set to zero:
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This is easily solved for λj, yielding the new reconstruction  ( 1)k
j
+ :
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This is the well known MLEM algorithm for emission tomography.
It can be shown that this recipe has the wonderful feature that each new 

EM iteration increases the value of the likelihood LML. It should be noted that the 
complete data xij do not appear in Eq. (13.67); they are needed in the derivation 
but they do not need to be computed explicitly. This is very fortunate as there is a 
huge number of them.

An initial image λ(1) is required to start the iterations. As experience (and 
theoretical analysis) has shown that higher spatial frequencies have slower 
convergence, and because smooth images are preferred, the initial image is 
usually chosen to be uniform, by setting λj

(1)  =  C and j  =  1…J, where C is a 
strictly positive constant.

The MLEM algorithm is multiplicative, implying that it cannot change the 
value of a reconstruction voxel, when the current value is zero. For this reason, 
the voxels in the initial image should only be set to zero if it is known a priori that 
they are indeed zero. The derivation of the MLEM algorithm uses the assumption 
that all yi, all xij and all λj are non-negative. Assuming that yi ≥ 0 and i = 1…I, 
and considering that the probabilities Aij are also non-negative, it is clear that 
when the initial image λ(1) is non-negative, all subsequent images λ(k) will be 
non-negative as well. However, when, for some reason, a reconstruction value 
becomes negative (e.g. because one or a few sinogram values yi are negative), 
then convergence is no longer guaranteed. In practice, divergence is almost 
guaranteed in that case. Consequently, if the sinogram is pre-processed with a 
procedure that may produce negatives (e.g. randoms subtraction in PET), MLEM 
reconstruction will only work if all negative values are set to a non-negative 
value.
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13.3.3.2.	Reconstruction from list-mode data

The measured data yi considered in the derivations above (so-called ‘binned’ 
data) represent the number of counts acquired within an individual crystal pair i 
(LOR i), that is, yi represents the sum of those acquired events (indexed by m) 
that were assigned (histogrammed) to the i-th LOR:  1i m i∈

=∑y . However, in 
modern PET systems, the number of possible LORs within the FOV typically 
exceeds (often by many times) the number of events acquired in a clinical PET 
study. Consequently, the binned data are very sparse and it is more efficient 
to store and process each acquired event (with all of its relevant information) 
separately, in the so-called ‘list-mode’ format.

Modification of the maximum-likelihood algorithms is straightforward 
(whether MLEM or accelerated algorithms based on ordered subsets discussed  
later), as shown in works by Parra and Barrett [13.22], and by Reader et al. [13.23]. 
It should be noted that the same is not true about other algorithms, for example, 
algorithms with additive updates. The MLEM algorithm for the list-mode data 
can be obtained by replacing yi in the MLEM equation (Eq. (13.67)) by the above 
mentioned sum over events, skipping the LORs with zero counts (which do not 
contribute to the MLEM sum), and combining the sum over LORs i with the sum 
over events m:
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where im represents the LOR index in which the m-th event has been recorded. 

The main difference is that the MLEM sum is now evaluated (including 
calculations of the relevant forward and back projections) only over the list of 
the available events (in any order). However, it is important to mention here that 
the normalizing term in front of the sum (sensitivity matrix 

i ij∑ A ) still has to 
be calculated over all possible LORs, and not only those with non-zero counts. 
This represents a challenge for the attenuated data (attenuation considered as 
part of the system matrix A), since the sensitivity matrix has to be calculated 
specifically for each object and, therefore, it cannot be pre-computed. For modern 
systems with a large number of LORs, calculation of it often takes more time 
than the list-mode reconstruction itself. For this reason, alternative approaches 
(involving certain approximations) have been considered for the calculation of 
the sensitivity matrix, such as subsampling approaches [13.24] or Fourier based 
approaches [13.25].
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13.3.3.3. Reconstruction of time of flight PET data

In the TOF case, the probability of a pair of photons arriving from a particular 
point along the LOR (as reported based on the difference of their detection times) is 
given by a Gaussian kernel having a width determined by the timing uncertainty of 
the detection system. In contrast, in the non-TOF case, the probability of detecting 
the event is approximately uniform along the LOR. Modification of iterative 
reconstruction algorithms (whether for binned or list-mode data) to account for the 
TOF is straightforward. Integrations along the LORs (the main component of the 
system matrix A) just need to be replaced with the TOF kernel weighted integrations 
along the LORs. The forward projection (or back projection) in a certain direction 
can now be viewed, and performed, as a convolution of the image with a proper 
TOF kernel in the LOR direction (see Fig. 13.13). The rest of the algorithm, i.e. 
formulas derived in the previous subsections, stays exactly the same (only the form 
of the system matrix A is changed). Additional information provided by the TOF 
measurements, leading to more localized data, results in faster, and more uniform, 
convergence, as well as in improved signal to noise ratios in reconstructed images, 
as widely reported in the literature.

Projection 
(LOR-binned events) 

Histo-Projection 
(LOR & TOF-binned events) 

histo-projection bins = 
TOF-extended projection bins  

Projection 
(LOR-binned events) 

Histo-Image 
(image-binned events) 

histo-image voxels ≡  
image voxels 

FIG. 13.13.  Comparison of the data formats for binned time of flight (TOF) data 
(left: histo-projection for a 45° view) and for the DIRECT (direct image reconstruction for 
TOF) approach (right: histo-image for a 45° view). Histo-projections can be viewed as an 
extension of individual non-TOF projections into TOF directions (time bins), and their 
sampling intervals relate to the projection geometry and timing resolution. Histo-images are 
defined by the geometry and desired sampling of the reconstructed image. Acquired events 
and correction factors are directly placed into the image resolution elements of individual 
histo-images (one histo-image per view) having a one to one correspondence with the 
reconstructed image voxels. 

The TOF mode of operation has some practical consequences (and novel 
possibilities) for the ways the acquired data are stored and processed. The 
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list-mode format is very similar to the non-TOF case. The event structure is just 
slightly expanded by a few bits (5–8 bits/event) to include the TOF information, 
and the events are processed event by event as in the non-TOF case.

On the other hand, the binned data undergo considerable expansion when 
accommodating the TOF information. The projection (X ray transform) structures 
are expanded by one dimension, that is, each projection bin is expanded in the 
LOR direction into the set of time bins forming the so-called histo-projections 
(see Fig. 13.13 (left)). In practice, the effect of this expansion on the data size is 
not as bad as it appears, because the localized nature of TOF data allows decreased 
angular sampling (typically about 5–10 times) in both azimuthal and co-polar 
directions (views), while still satisfying angular sampling requirements. The 
resulting data size, thus, remains fairly comparable to the non-TOF case. During 
the reconstruction process, the histo-projection data are processed time-bin 
by time-bin (instead of projection line by line in the non-TOF case). It should 
be noted that hybrid approaches also exist between the two aforementioned 
approaches, in which the data are binned in the LOR space, but events are stored 
in list-mode for each LOR bin.

TOF also allows a conceptually different approach of data partitioning, 
leading to more efficient reconstruction implementations, by using the DIRECT 
(direct image reconstruction for TOF) approach utilizing so-called histo-images 
(see Fig. 13.13 (right)) [13.25]. In the DIRECT approach, the data are directly 
histogrammed (deposited), for each view, into image resolution elements 
(voxels) of desired size. Similarly, all correction arrays and data are estimated 
or calculated in the same histo-image format. The fact that all data and image 
structures are now in image arrays (of the same geometry and size) makes 
possible very efficient computer implementations of the data processing and 
reconstruction operations.

13.3.3.4.	Reconstruction of dynamic data

Data acquired from an object dynamically changing with time in activity 
distribution, or in morphology (shape), or in both is referred to as dynamic data. 
An example of the first case would be a study looking at temporal changes in 
activity uptake in individual organs or tissues, so-called time–activity curves. An 
example of the second case would be a gated cardiac study providing information 
about changes of the heart morphology during the heart beat cycle (such as 
changes of the heart wall thickness or movements of the heart structures).

The dynamic data can be viewed as an expansion of static (3‑D) data 
by the temporal information into 4‑D (or 5‑D) data. The dynamic data are 
usually subdivided (spread) into a set of temporal (time) frames. In the 
first application, each time frame represents data acquired within a certain 
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sequential time subinterval of the total acquisition time. The subintervals can 
be uniform, or non-uniform with their durations adjusted, for example, to the 
speed of the change of the activity curves. In the second application, each time 
frame represents the total counts acquired within a certain stage (gate) of the 
periodic organ movement (e.g. gated based on the electrocardiogram signal). 
In the following, issues of the reconstruction of dynamic data in general are 
addressed. Problems related to the motion and its corrections are discussed in 
Section 13.3.6.4.

Once the data are subdivided (during acquisition) or sorted (acquired 
list-mode data) into the set of time frames, seemingly the most natural way of 
reconstructing them is to do it for each time frame separately. It should be noted 
that this is the only available option for the analytical reconstruction approaches, 
while the iterative reconstruction techniques can also reconstruct the dynamic 
data directly in 4‑D (or 5‑D). A problem with frame by frame reconstruction is 
that data in the individual time frames are quite noisy, since each time frame 
only has a fraction of the total acquired counts, leading to noisy reconstructions. 
Consequently, the resulting reconstructions often have to be filtered in the spatial 
and/or temporal directions to obtain images of any practical value. Temporal 
filtering takes into account time correlations between the signal components in 
the neighbouring time frames, while the noise is considered to be independent. 
Filtering, however, leads to resolution versus noise trade-offs.

On the other hand, reconstructing the whole 4‑D (or 5‑D) dataset together, 
while using this correlation information in the (4‑D) reconstruction process via 
proper temporal (resolution) kernels or basis functions, can considerably improve 
those trade-offs as reported in the literature (similarly to the case of spatial 
resolution modelling). The temporal kernels (basis functions) can be uniform in 
shape and distribution, or can have a non-uniform shape (e.g. taking into account 
the expected or actual shape of the time–activity curves) and can be distributed 
on a non-uniform grid (e.g. reflecting count levels at individual frames or image 
locations). The kernel shapes and distributions can be defined, or determined, 
beforehand and be fixed during the reconstruction. During the reconstruction 
process, just the amplitudes of the basis functions are reconstructed. The 
algorithms derived in the previous subsections basically stay the same, where the 
temporal kernels can be considered as part of the system matrix A (comparable 
to including the TOF kernel in TOF PET). Another approach, more accurate but 
mathematically and computationally much more involved, is to iteratively build 
up the shape (and distribution) of the temporal kernels during the reconstruction 
in conjunction with the reconstruction of the emission activity (that is, the 
amplitude of the basis functions).

While iterative methods lead to a clear quality improvement when 
reconstructing dynamic data, thanks to the more accurate models of the signal and 
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data noise components, for the quantitative dynamic studies their shortcoming 
is their non-linear behaviour, especially if they are not fully converged. For 
example, the local bias levels can vary across the time frames as the counts, local 
activity levels and object morphology change, which can lead to less accurate 
time–activity curves. On the other hand, analytical techniques which are linear 
and consequently do not depend on the count levels and local activity, might 
provide a more consistent (accurate) behaviour across the time frames in the 
mean (less bias of the mean), but much less consistent (less precise) behaviour in 
the variance due to the largely increased noise. It is still an open issue which of 
the two approaches provides more clinically useful results, and the discussions 
and research on this topic are still open and ongoing.

13.3.4.	 Acceleration

13.3.4.1.	Ordered-subsets expectation-maximization

The MLEM algorithm requires a projection and a back projection in 
every iteration, which are operations involving a large number of computations. 
Typically, MLEM needs several tens to hundreds of iterations for good 
convergence. Consequently, MLEM reconstruction is slow and many researchers 
have studied methods to accelerate convergence.

The method most widely used is ordered-subsets expectation-maximization 
(OSEM) [13.26]. The MLEM algorithm (Eq.  (13.67)) is rewritten here for 
convenience:
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where k is the iteration number and λ(1) is typically set to a uniform, strictly 
positive image.

In OSEM, the set of all projections {1 ... I} is divided into a series of subsets 
St, t = 1…T. Usually, these subsets are exhaustive and non-overlapping, i.e. every 
projection element i belongs to exactly one subset St. In SPECT and PET, the data 
y are usually organized as a set of (parallel- or fan-beam) projections, indexed 
by projection angle ϕ. Therefore, the easiest way to produce subsets of y is by 
assigning all of the data for each projection angle to exactly one of the subsets. 
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However, if the data y are stored in list-mode (see Section 13.3.2), the easiest way 
is to simply cut the list into blocks, assigning each block to a different subset.

The OSEM algorithm can then be written as: 

initialize  old
j , j = 1,…J

for k = 1,…K
for t = 1,…T
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If all of the projections are combined into a single subset, the OSEM algorithm is 
identical to the MLEM algorithm. Otherwise, a single OSEM iteration k consists 
of T sub-iterations, where each sub-iteration is similar to an MLEM iteration, 
except that the projection and back projection are only done for the projections of 
the subset St. If every sinogram pixel i is in exactly one subset, the computational 
burden of a single OSEM iteration is similar to that of an MLEM iteration. 
However, MLEM would update the image only once, while OSEM updates it T 
times. Experience shows that this improves convergence by a factor of about T, 
which is very significant.

Convergence is only guaranteed for consistent data and provided that there 
is subset balance, which requires:
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	 (13.72)

where St and Su are different subsets. 

In practice, these conditions are never satisfied, and OSEM can be shown to 
converge to a limit cycle rather than to a unique solution, with the result that the 
OSEM reconstruction is noisier than the corresponding MLEM reconstruction. 
However, in many applications, the difference between the two is not clinically 
relevant. 

The procedure is illustrated with a simple simulation in Fig. 13.14. As there 
was no noise and no attenuation, convergence of OSEM is guaranteed in this 
example. In more realistic cases, it may be recommended to have four or more 
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projections in a single subset, to prevent excessive noise amplification at higher 
iteration numbers.

MLEM iterations

FIG. 13.14.  A simulation comparing a single ordered-subsets expectation-maximization 
(OSEM) iteration with 40 subsets, to 40 maximum-likelihood expectation-maximization 
(MLEM) iterations. The computation time of the MLEM reconstruction is about 40 times 
longer than that of OSEM. In this example, there were only two (parallel-beam) projection 
angles per subset, which is clearly visible in the first OSEM iteration.

13.3.4.2.	Refinements of the ordered-subsets expectation-maximization algorithm

As mentioned above, OSEM converges to a limit cycle: after many 
iterations, it starts cycling through a series of solutions rather than converging to 
the maximum-likelihood solution. When compared to the initial image (usually a 
uniform image), these series of solutions are ‘relatively close’ to the maximum-
likelihood solution. Consequently, the convergence of OSEM is initially much 
faster but otherwise similar to that of MLEM; the better performance of MLEM 
only becomes noticeable at high iteration numbers. Thus, a simple solution to 
avoid the limit cycle is to gradually decrease the number of subsets: this approach 
preserves the initial fast convergence of OSEM, avoiding the limit cycle by 
returning to MLEM at high iteration numbers. A drawback of this approach is 
that convergence becomes slower each time the number of subsets is reduced. 
In addition, there is no theory available that prescribes how many sub-iterations 
should be used for each OSEM iteration.

Many algorithms have been proposed that use some form of relaxation to 
obtain convergence under less restrictive conditions than those of OSEM. As an 
example, relaxation can be introduced by rewriting the OSEM Eq. (13.71) in an 
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additive way. Then, a relaxation factor α is inserted to scale the update term to 
obtain RAMLA (row-action maximum-likelihood algorithm [13.27]): 
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The relaxation factor α decreases with increasing iteration number to ensure 

convergence. It should be noted that setting  1 /
t

ij
i∈

= ∑ A
S

 for all (sub-)iterations 

yields OSEM. Several alternative convergent block iterative algorithms have 
been proposed. They are typically much faster than MLEM but slightly slower 
than the (non-convergent) OSEM algorithm.

13.3.5.	 Regularization

MLEM maximizes the likelihood, by making the computed projections 
(from the current reconstruction) as similar as possible to the measured projections, 
where the similarity is measured based on the Poisson distribution. An upper limit 
of the likelihood would be obtained when the measured and calculated projections 
are identical. However, this is never possible, because Poisson noise introduces 
inconsistencies. Nevertheless, a large part of the noise is consistent, which means 
that it can be obtained as the projection of a (noisy) activity distribution. This part 
of the noise propagates into the reconstructed image, and is responsible for the 
so-called ‘deterioriation’ of the MLEM image at high iterations.

13.3.5.1.	Stopping iterations early

An ‘accidental’ feature of the MLEM algorithm is its frequency dependent 
convergence: low spatial frequencies converge faster than higher frequencies. 
This is due to the low-pass effect of the back projection operation. This effect is 
easily verified for the reconstruction of the activity in a point source, if the MLEM 
reconstruction is started from a uniform image. The first iteration then yields the 
back projection of the point source measurement. As discussed in Section 13.2.1, 
this yields an image with intensity 2 2( , ) 1 /x y x y+ ∝ , if the point source was 
located at (0,0). Each iteration multiplies with a similar back projection, implying 
that after t iterations, the image intensity at (x, y) is proportional to 1/(x2 + y2)t/2, 
so that the peak at (0,0) becomes a bit sharper with every iteration. For more 
complicated objects, the evolution is more subtle.



489

 IMAGE RECONSTRUCTION  

True image

Smoothed
true image

Sinogram
With
noise
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FIG. 13.15.  Simulation study illustrating position dependent convergence in PET with 
attenuation. After 8 iterations (iter), convergence in highly attenuated regions is poor. 
After 100 iterations, good convergence is obtained, but with strong noise propagation. 
Post-smoothing yields a fair compromise between noise and nearly position independent 
resolution. FBP: filtered back projection.

It follows that reducing the number of iterations has an effect which is 
similar to reducing the cut-off frequency of a low-pass filter. However, the effect 
on the resolution is position dependent, as illustrated in Fig. 13.15. Attenuated 
PET projections of a highly radioactive uniform ring inside a less active disc 
were simulated with and without Poisson noise. After eight MLEM iterations, 
the reconstructed ring has non-uniform activity. In the centre of the phantom, 
convergence is slower, resulting in poorer resolution and poorer recovery of the 
activity in the ring. After 100 iterations, convergence is much better everywhere 
in the phantom, but for noisy data, there is very disturbing noise propagation. 

If the image was acquired for detection (e.g. to see if there is a radioactive 
ring inside the disc or not), then the image produced after eight iterations is 
excellent. However, if the aim is quantification (e.g. analysing the activity 
distribution along the ring), then quantification errors can be expected at low 
iteration numbers.

13.3.5.2.	Post-smoothed maximum-likelihood

The noise in the higher MLEM iterations is high frequency noise, and 
there are strong negative correlations between neighbouring pixels. As a result, a 
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modest amount of smoothing strongly suppresses the noise at the cost of a mild 
loss of resolution. This is illustrated in the third row of Fig. 13.15.

If the MLEM implementation takes into account the (possibly position 
dependent) spatial resolution effects, then the resolution should improve with 
every MLEM iteration. After many iterations, the spatial resolution should be 
rather good, similar or even better than the sinogram resolution, but the noise 
will have propagated dramatically. It is assumed that the obtained spatial 
resolution corresponds to a position dependent point spread function which can 
be approximated as a Gaussian with a full width at half maximum (FWHM) 
of FML(x, y). Assume further that this image is post-smoothed with a (position 
independent) Gaussian convolution kernel with an FWHM of Fp. The local 
point spread function in the smoothed image will then have an FWHM of 

( ( , ))F x y FML p
2 2 . If enough iterations are applied and if the post-smoothing 

kernel is sufficiently wide, the following relation holds Fp ≫ Fml(x,  y) and, 
therefore, 2 2

ML p p( ( , ))F x y F F+ ≈ . Under these conditions, the post-smoothed 
MLEM image has a nearly position independent and predictable spatial 
resolution. Thus, if PET or SPECT images are acquired for quantification, it is 
recommended to use many iterations and post-smoothing, rather than a reduced 
number of iterations, for noise suppression.

13.3.5.3.	Smoothing basis functions

An alternative approach to counter noise propagation is to use an image 
representation that does not accomodate noisy images. Instead of representing the 
image with a grid of non-overlapping pixels, a grid of smooth, overlapping basis 
functions can be used. The two mostly used approaches are the use of spherical 
basis functions or ‘blobs’ [13.28] and the use of Gaussian basis functions or 
sieves [13.29].

In the first approach, the projector and back projector operators are 
typically adapted to work directly with line integrals of the basis functions. In 
the sieves approach, the projection of a Gaussian blob is usually modelled as the 
combination of a Gaussian convolution and projection along lines. The former 
approach produces a better approximation of the mathematics, while the latter 
approach yields a faster implementation.

The blobs or sieves are probably most effective when their width is very 
similar to the spatial resolution of the tomographic system. In this setting, the basis 
function allows accurate representation of the data measured by the tomographic 
system, and prevents reconstruction of much of the (high frequency) noise. It has 
been shown that using the blob during reconstruction is more effective than using 
the same blob only as a post-smoothing filter. The reason is that the post-filter 
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always reduces the spatial resolution, while a sufficiently small blob does not 
smooth data if it is used during reconstruction.

If the blob or sieve is wider than the spatial resolution of the tomographic 
system, then its use during reconstruction produces Gibbs over- and undershoots, 
also known as ‘ringing’. This effect always arises when steep edges have to be 
represented with a limited frequency range, and is related to the ringing effects 
observed with very sharp low-pass filters. For some imaging tasks, these ringing 
artefacts are a disadvantage.

13.3.5.4.	Maximum a posteriori or penalized likelihood 

Smoothing the MLEM image is not a very elegant approach: first, the 
likelihood is maximized, and then it is decreased again by smoothing the image. 
It seems more elegant to modify the objective function, such that the image that 
maximizes it does not need further processing. This can be done with a Bayesian 
approach, which is equivalent to combining the likelihood with a penalty 
function.

It is assumed that a good reconstruction image λ will be obtained if that 
image maximizes the (logarithm of the) probability p(λ|y) given by Eq. (13.39) 
and repeated here for convenience:

ˆ argmax(ln ( ) ln ( ))p p= +|λ y


  	 (13.74)

The second term represents the a priori knowledge about the tracer distribution, 
and it can be used to express our belief that the true tracer distribution is fairly 
smooth. This is usually done with a Markov prior. In a Markov prior, the a priori 
probability for a particular voxel, given the value of all other voxels, is only a 
function of the direct neighbours of that voxel:

 ( | , ) ( | , )j k j k jp k j p k∀ ≠ = ∈    N 	 (13.75)

where Nj denotes the set of neighbour voxels of j. 

Such priors are usually written in the following form: 

 ( ) ln ( ) ln ( | , ) ( )
j

j k j j k
j j k

P p p k E
∈

= = ∈ =−∑ ∑∑      
N

N 	 (13.76)

where 

the ‘energy’ function E is designed to obtain the desired noise suppressing 
behaviour and the parameter β is the weight assigned to the prior.
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A higher weight results in smoother images, at the cost of a decreased 
likelihood, i.e. poorer agreement with the acquired data. In most priors, the 
expression is further simplified by making E a function of a single variable, the 
absolute value of the difference |λj – λk|.

Some popular energy functions E(|λj – λk|) are shown in Fig. 13.16. A simple 
and effective one is the quadratic prior E(x) = x2; an MAP reconstruction with 
this prior is shown in Fig. 13.17. Better preservation of strong edges is obtained 
with the Huber prior: it is quadratic for |λj – λk| ≤ δ and linear for |λj – λk| > δ, 
with a continuous first derivative at δ. Consequently, it applies less smoothing 
than the quadratic prior for differences larger than δ, as illustrated in Fig. 13.17. 
Even stronger edge tolerance is obtained with the Geman prior, which converges 
asymptotically to a constant for large differences, implying that it does not 
smooth at all over very large pixel differences.

Quadratic

Huber

Geman

FIG. 13.16.  The energy function of the quadratic prior, the Huber prior and the Geman prior.

Original QuadraticMLEM Huber Geman

FIG. 13.17. Maximum-likelihood expectation-maximization (MLEM) and maximum a 
posteriori reconstructions of the Shepp–Logan phantom. Three different smoothing priors were 
used: quadratic, Huber and Geman. The latter smooth small differences quadratically, but are 
more tolerant for large edges.

It can be shown that the prior (Eq.  (13.76)) is a concave function of λ if 
E|λj – λk| is a convex function. Consequently, the quadratic and Huber energy 
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functions yield a concave prior: it has a single maximum. In contrast, the Geman 
prior is not concave (see F ig.  13.16) and has local maximums. Such concave 
priors require careful initialization, because the final reconstruction depends on 
the initial image and on the behaviour of the optimization algorithm. 

Figure 13.18 shows that MAP reconstructions produce position dependent 
spatial resolution, similar to MLEM with a reduced number of iterations. The 
reason is that the prior is applied with a uniform weight, whereas the likelihood 
provides more information about some voxels than about others. As a result, 
the prior produces more smoothing in regions where the likelihood is ‘weaker’, 
e.g. regions that have contributed only a few photons to the measurement due to 
high attenuation. 

Smoothed MLEM MAP quadratic priorMLEM

FIG. 13.18.  Maximum-likelihood expectation-maximization (MLEM), smoothed MLEM and 
maximum a posteriori (MAP) (quadratic prior) reconstructions of simulated PET data of a 
brain and a ring phantom. The ring phantom reveals position dependent smoothing for MAP.

The prior can be made position dependent as well, to ensure that the balance 
between the likelihood and the prior is about the same in the entire image. In 
that case, MAP with a quadratic prior produces images which are very similar 
to MLEM images with post-smoothing: if the prior and smoothing are tuned to 
produce the same spatial resolution, then both algorithms also produce nearly 
identical noise characteristics.



494

CHAPTER 13

Many papers have been devoted to the development of algorithms for MAP 
reconstruction. A popular algorithm is the so-called ‘one step late’ algorithm. 
Inserting the derivative of the prior P in Eq. (13.66) yields:
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where ( )ˆ k
iy  is the projection of the current reconstruction for detector i. 

A problem with this equation is that  ( ) / jP∂ ∂   is itself a function of the 
unknown image λ. To avoid this problem, the derivative of the prior is simply 
evaluated in the current reconstruction λ(k). The equation can then be solved to 
produce the MAP update expression: 
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Owing to the approximation, convergence is not guaranteed. The algorithm 
usually works fine, except with very high values for the prior.

The MLEM algorithm can be considered as a gradient ascent algorithm 
(see also Eq. (13.50)):
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Extensions to an MAP gradient ascent algorithm typically have the form: 
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where the key is to determine a good preconditioner S. 
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Several methods with (almost) guaranteed convergence have been based 
on the previously described optimization transfer method, by designing useful 
surrogate functions for both the likelihood and the prior.

13.3.6.	 Corrections

In typical emission data, the true events (having a Poisson character) are 
distorted and contaminated by a number of physical effects. To make the best use 
of the acquired data and of our knowledge of the acquisition system, these effects 
should be included in the reconstruction model. The distortion effects include 
resolution effects (such as detector resolution, collimator effects, and in PET 
also non-collinearity and positron range) and motion effects. The contamination 
effects can be divided, by their character and the way they are treated, into 
multiplicative and additive terms. The multiplicative factors include: attenuation 
of the annihilation photons by the object, the probability of the detector elements 
detecting an event once they are hit by the photon (detector normalization 
factors), coefficients accounting for the decay time and the geometrical restriction 
of directions/LORs for which true events are detected (axial acceptance angle, 
detector gaps). The additive terms include scattered and random (in the PET 
case) coincidences. Details on calculation of the correction factors and terms 
are discussed in other chapters. This chapter is limited to the discussion of their 
utilization within the reconstruction process.

The most straightforward approach is to pre-correct the data before 
reconstruction for the contamination effects (multiplying by multiplicative 
correction coefficients and subtracting the scatter and random estimates), 
so as to approximate the X ray transform (or attenuated X ray transform in 
the SPECT case) of the reconstructed object. For analytical reconstruction 
approaches (derived for the ideal X ray transform data), the data always have to 
be pre-corrected.

For the statistical reconstruction methods, derived based on the statistical 
properties of the data, an attempt is made to preserve the Poisson character 
of the data as much as possible by including the correction effects inside the 
reconstruction model. Theoretically, the most appropriate way is to include the 
multiplicative and scatter effects directly into the system matrix. The system 
matrix would have to include not only an accurate model of the direct data (true 
events) but also of the physical processes of the generation of the contamination 
scatter data. In a sense, the contamination would then become valid data, bringing 
extra information to our model and, thus, adding valid (properly modelled) 
counts to the image. However, inclusion of the scatter model into the system 
matrix tremendously increases the number of non-zero elements of the system 
matrix, i.e. the matrix is not sparse anymore, and consequently the system is more 
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ill-posed (the contamination data are typically quite noisy) and computationally 
exceedingly expensive, and, thus, not feasible for routine clinical use.

The more practical, and commonly used, approach is to include correction 
effects as multiplicative factors and additive terms within the forward projection 
model of the iterative reconstruction approaches:

y = Aλ + b 	 (13.82)

where the effects directly influencing the direct (true) data are included inside the 
system matrix A and will be discussed in the following, while the additive terms 
b (including scatter and randoms) will be discussed separately in Section 13.3.6.2 
on additive terms.

13.3.6.1.	Factors affecting direct events — multiplicative effects

In the PET case, the sequence of the physical effects (described in previous 
chapters) that occur as the true coincident events are generated and detected can 
be described by the following factorization of the system matrix A as discussed 
in detail in Ref. [13.30]:

det.sens det.blur att geom tof positronA = A A A A A A 	 (13.83)

where 

Apositron	� models the positron range;
Atof	� models the timing accuracy for the TOF PET systems (TOF resolution 

effects, as discussed in Section 13.3.3.3);
Ageom 	� is the geometric projection matrix, the core of the system matrix, 

which is a geometrical mapping between the source (voxel j) and data 
(projection bin i, defined by the LOR, or its time bin in the TOF case); 
the geometrical mapping is based on the probability (in the absence of 
attenuation) that photon pairs emitted from an individual image location 
(voxel) reach the front faces of a given crystal pair (LOR); 

Aatt	� is a diagonal matrix containing attenuation factors on individual LORs;
Adet.blur	� models the accuracy of reporting the true LOR positions (detector 

resolution effects; discussed in Section 13.3.6.2);

and Adet.sens is a diagonal matrix modelling the probability that an event will 
be reported once the photon pair reaches the detector surface — a unique 
multiplicative factor for each detector crystal pair (LOR) modelled by 
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normalization coefficients, but can also include the detector axial extent and 
detector gaps.

In practice, the attenuation operation Aatt is usually moved to the left (to 
be performed after the blurring operation). This is strictly correct only if the 
attenuation factors change slowly, i.e. they do not change within the range 
of detector resolution kernels. However, even if this is not the case, a good 
approximation can be obtained by using blurred (with the detector resolution 
kernels) attenuation coefficients. In this case, the multiplicative factors Adet.sens 
and Aatt can be removed from the system matrix A and applied only after the 
forward projection operation as a simple multiplication operation (for each 
projection bin). The rest of the system matrix (except Apositron, which is object 
dependent) can now be pre-computed, whether in a combined or a factorized 
form, since it is now independent of the reconstructed object. On the other hand, 
the attenuation factors Aatt (and Apositron, if considered) have to be calculated for 
each given object.

In the SPECT case, the physical effects affecting the true events can be 
categorized and factorized into the following sequence:

det.sens det.blur geom,attA = A A A 	 (13.84)

where 

Adet.sens	� includes multiplicative factors (such as detector efficiency and decay 
time);

Adet.blur	� represents the resolution effects within the gamma camera (the intrinsic 
resolution of the system);

and Ageom,att is the geometric projection matrix, also including the collimator 
effects (such as the depth dependent resolution) and the depth and view dependent 
attenuation factors.

For gamma cameras, the energy and linearity corrections are usually 
performed in real time, and the remaining (detector efficiency) normalization 
factors are usually very close to one and can be, for all practical purposes, ignored 
or pre-corrected. Similarly, the theory says that the decay correction should be 
performed during the reconstruction, because it is different for each projection 
angle. However, for most tracers, the decay during the scan is very modest, 
and in practice it is usually either ignored or done as a pre-correction. The 
attenuation component is object dependent and needs to be recalculated for each 
reconstructed object. Furthermore, its calculation is much more computationally 
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expensive than in the PET case, since it involves separate calculations of the 
attenuation factors for each voxel and for each view. This is one of the reasons 
why the attenuation factors have often been ignored in SPECT. More details on 
the inclusion of the resolution effects into the system matrix are discussed in 
Section 13.3.6.3.

13.3.6.2.	Additive contributions

The main additive contaminations are scatter (SPECT and PET) and 
random events (PET). The simplest possibility of dealing with them is to 
subtract their estimates ( s  and r ) from the acquired data. While this is a valid 
(and necessary) pre-correction step for the analytical reconstructions, it is not 
recommended for statistical approaches since it changes the statistical properties 
of the data, causing them to lose their Poisson character. As the maximum-
likelihood algorithm is designed for Poisson distributed data, its performance is 
suboptimal if the data noise is different from Poisson. Furthermore, subtraction of 
the estimated additive terms from the noisy acquired data can introduce negative 
values into the pre-corrected data, especially for low count studies. The negative 
values have to be truncated before the maximum-likelihood reconstruction, since 
it is not able to correctly handle the negative data. This truncation, however, leads 
to a bias in the reconstruction.

On the other end of the spectrum of possibilities, would be considering 
the scatter and randoms directly in the (full) system model, that is, including a 
complete physical model of the scatter and random components into a Monte 
Carlo calculation of the forward projection. However, this approach is exceedingly 
computationally expensive and is not feasible for practical use. A practical and 
the most common approach for dealing with the additive contaminations is to add 
their estimate ( = +b s r ) to the forward projection in the matrix model of the 
iterative reconstruction, i.e. the forward model is given by +A b , as considered 
in the derivation of the MLEM reconstruction (Eq. (13.67)).

Special treatment has to be considered for clinical scanners in which the 
random events (r, estimated by delayed coincidences) are on-line subtracted 
from the acquired data (y, events in the coincidence window — prompts). 
The most important characteristic of the Poisson data is that their mean equals 
their variance: mean(yi) = var(yi). However, after the subtraction of the delays 
from the prompts (both being Poisson variables), the resulting data (γ) are 
not Poisson anymore, since mean(γi)  =  mean(yi – ri)  =  mean(yi) – mean(ri), 
while var(γi) = var(yi – ri) = var(yi) + var(ri). To regain the main characteristic 
of the Poisson data (at least of the first two moments), the shifted Poisson 
approach can be used, utilizing the fact that adding a (noiseless) constant 
value to the Poisson variable changes the mean but preserves the variance 
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of the result. To modify the mean of the subtracted data γ to be equal to 
their variance (i.e. var(yi) + var(ri)), we need to add to the subtracted data an 
estimate (of the mean) of the randoms ( )r  multiplied by two. This gives 
mean( 2 ) mean( 2 ) mean( ) mean( )i i i i i i i+ = − + = +r y r r y rg , which is equal to 

) (var( 2 ) var( var )i i i i+ = +r y yg . The MLEM algorithm using the shifted Poisson 
model can then be written as:

 ( )
( 1)

( )

2

2

k
jk i i

j ij k
ij ij j i ii
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+ +∑∑ ∑
 




r
A

A A s r
	 (13.85)

It is worthwhile mentioning here that even in the shifted Poisson case, the 
negative values in the subtracted data and consequent truncation leading to the 
bias and artefacts cannot be completely avoided. However, the chance of the 
negative values decreases since the truncation of the negative values is being 
performed on the ‘value-shifted’ data ( 2 )i i+ r . Examples of reconstructions 
from data with a subtracted additive term, using the regular MLEM algorithm 
and using MLEM with the shifted Poisson model, are shown in Fig. 13.19. As the 
counts were relatively high in this simulation, the subtraction did not produce 

y – r

Original

Original +
contaminator MLEM of (y – r)

y r

MLEM of
(y – r + 2r, 2r)

FIG. 13.19.  Illustration of (exaggerated case of) reconstructions from contaminated data y 
from which the additive contamination term r was subtracted (both data and contamination 
term are Poisson). The top row shows the sinograms. The increased noise level in the 
contaminated area in the sinogram (y – r) should be noted. The bottom row shows the true 
image without and with the contaminator, the maximum-likelihood expectation-maximization 
(MLEM) reconstruction from the subtracted data (y – r) and the shifted Poisson MLEM 
reconstruction, in which the estimated (noiseless) additive term 2r  is added to the subtracted 
data and forward projection as given by Eq. (13.85).
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negatives. MLEM of (y – r) creates streaks because the reliability of the subtracted 
data is overestimated.

It should be noted that in the reconstruction model (as well as in the 
pre-correction approaches) the estimates of the scatter and randoms have to 
be treated in the same way as the estimates of the true events in the forward 
projection, including consideration of the normalized or un-normalized events, 
attenuation corrected or uncorrected data, gaps in the data, etc. Various challenges 
exist for the scatter and randoms estimations in general, such as modelling of the 
out of FOV scatter. This is addressed in Chapter 11.

13.3.6.3.	Finite spatial resolution

There are a number of physical and geometrical effects and limitations 
(such as positron range, non-collinearity, depth of interaction, size of detector 
crystal elements, inter-crystal scatter, collimator geometry, etc.) affecting PET 
and SPECT resolution as described in more detail in Chapter 11. To get the most 
out of the acquired data and to correct for the resolution degradation, these effects 
have to be properly modelled in the system matrix of statistical reconstruction, 
as considered in the components (Adet.blur, Ageom, Apositron) of the factorized 
system matrix outlined in Section 13.3.6.1. This step does not influence the 
mathematical definition of the reconstruction algorithm (such as MLEM, as 
given by Eq. (13.67)); only the form of its system matrix is changed.

However, this step has very practical consequences for the complexity of 
the algorithm implementation, for computational demands and most importantly 
for the quality of the reconstructed images. By including the resolution effects 
into the reconstruction model, a larger fraction of the data is being used for the 
reconstruction within each point of the space, with the true signal component 
becoming more consistent, while the noise components becoming less consistent 
with the model. Thus, the resolution modelling helps twice, by improving the 
image resolution while at the same time reducing the image noise, as illustrated 
in Fig.  13.20 for simulated SPECT data. This is quite different from the 
filtering case, where the noise suppression is always accompanied by resolution 
deterioration. On the other hand, the resolution modelling has a price in terms 
of a considerable increase in the computational load (both in space/memory and 
time) since the system matrix is much less sparse, that is, it contains a larger 
proportion of non-zero elements. This not only leads to more computational load 
per iteration, but also to a slower convergence of the iterative reconstruction and, 
consequently, to the need for more iterations.

Resolution effects can be subdivided into the effects dependent on the 
particular object, such as the positron range, and the effects influenced by the 
scanner geometry, design and materials (which can be determined beforehand 
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for the given scanner). The positron range depends on the particular attenuation 
structures in which the the positrons annihilate, and also varies from isotope 
to isotope. Furthermore, the shape of the probability function (kernel) of the 
positron annihilation abruptly changes at the boundaries of two tissues, such as 
at the boundary of the lungs and surrounding soft tissues, and, thus, it strongly 
depends on the particular object’s morphology and is quite challenging to model 
accurately. In general, the positron range has a small effect (compared to the other 
effects) for clinical scanners, particularly for studies using 18F-labelled tracers, 
and can often be ignored. However, for small animal imaging and for other tracers 
(such as 82Rb), the positron range becomes an important effect to be considered. 

MLEM resolution model

MLEM

MLEM

No

Simulated SPECT data

Poisson noise

FIG. 13.20.  Examples of the effects of resolution modelling within statistical iterative 
reconstruction. Data were simulated for a SPECT system with depth dependent resolution. It is 
clearly seen that using the proper resolution model within statistical reconstruction (lower two 
images on the right) not only improves the resolution of the images, but also helps to efficiently 
suppress the noise component. 

There is a whole spectrum of approaches to determine and implement the 
scanner dependent resolution models. Only the main ones are addresssed. The 
simplest, but least accurate, approach is to approximate the system resolution 
model by a spatially invariant resolution kernel, usually a spherically symmetric 
Gaussian, with the shape (FWHM) estimated from point source measurements 
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at one or more representative locations within the given scanner. This approach 
typically provides satisfactory results within the central FOV of large, whole 
body PET scanners. However, for PET systems with smaller ring diameters 
(relative to the reconstruction FOV), such as animal systems, and for SPECT 
systems with depth dependent resolution (and in particular with non-circular 
orbits), it is desirable to use more accurate spatially variant resolution models.

The second category is using analytically calculated resolution functions 
(usually spatially variant anisotropic kernels) for each location (LOR) as 
determined based on analytical models of physical effects affecting the resolution. 
This approach is usually limited to simple analytical models representing (or 
approximating) only basic physical characteristics of the system. The resolution 
kernels are usually calculated in real time during the reconstruction process when 
they are needed within the forward and back projection calculations. In SPECT, 
distance dependent collimator blurring requires convolution kernels that become 
wider and, therefore, need more computation, with increasing distance to the 
collimator. The computation time can be reduced considerably by integrating 
an incremental blurring step into the projector (and back projector), based on 
Gaussian diffusion. This method, developed by McCarthy and Miller in 1991, is 
described in more detail in chapter 22 of Ref. [13.5].

A more accurate but computationally very demanding approach is using 
Monte Carlo simulations of the resolution functions based on a set of point sources 
at various (ideally all) image locations. Setting up an accurate mathematical 
model (transport equations tracing the photon paths through the detector system/
crystals) is relatively easy within the Monte Carlo simulations, compared to the 
analytical approach of determining the resolution function. However, to obtain 
sufficient statistics to get the desired accuracy of the shape of the resolution 
functions is extremely time consuming. Consequently, simplifications often have 
to be made in practice, such as determining the resolution kernels only at a set of 
representative locations and interpolating/extrapolating from them the resolution 
kernels at other locations.

The most accurate but also most involved approach is based on 
experimental measurements of the system response by measuring physical point 
sources at a set of image locations within the scanner. This is a tedious and very 
time consuming process, involving point sources with long half-life isotopes and 
usually requiring the use of accurate robotic stages to move the point source. 
Among the biggest challenges is to accumulate a sufficient number of counts to 
obtain an accurate point spread function, even at a limited number of locations. 
Consequently, the actual resolution kernels used in the reconstruction model are 
often estimated by fitting analytical functions (kernels) to the measured data, 
rather than directly using the measured point spread functions.
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At the conclusion of this subsection, it is worth making the following general 
comment. In the light of the resolution modelling possibilities discussed above, 
one might wonder whether it is worth spending energy and resources on building 
new PET and SPECT systems with improved resolution properties. However, 
although it has been shown in the literature that proper system models lead to 
improved reconstructed image quality, they can never fully recover information 
that has been lost through resolution effects and other instrumentation limitations. 
Furthermore, due to the increased level of modelling, the system matrix becomes 
more dense, and consequently the inverse problem (reconstruction) becomes 
more ill-posed, thus making it impossible to attain perfect recovery for the 
realistic data. There is no doubt that improved instrumentation as well as novel 
and more accurate reconstruction models play an important role in improving 
image quality and quantitative accuracy, and eventually increasing the general 
clinical utility of emission tomography systems.

13.3.6.4.	Motion corrections

Owing to the relatively long acquisition times, motion effects, caused by 
patient movement and organ motion and deformation, cannot be avoided in 
emission tomography. In the following, all of these effects are covered under the 
simple term ‘motion’. With the continuous improvements of PET and SPECT 
technology, leading to improved spatial resolution, signal to noise ratio, image 
quality and accuracy of quantitative studies, corrections for motion effects 
become more important. In fact, artefacts caused by motion are becoming 
the single most important factor for image degradation, especially in PET 
or PET/computed tomography (CT) imaging of the upper torso region. For 
example, motion effects can lead to the loss of small lesions by blurring them out 
completely in regions with strong motion (such as near the lower lung wall), or to 
their misplacement into the wrong anatomical region (e.g. into the liver from the 
lungs, or vice versa). Motion correction has become an important research topic; 
however, a thorough discussion of this topic is out of the scope of this chapter 
and interested readers are referred to the literature on this topic. In the following, 
the main concepts of motion correction as dealt with within the reconstruction 
process are outlined.

The two main sources of motion related artefacts in emission studies are 
the motion during the emission scan and the discrepancy (caused by the motion) 
between the attenuation and emission data. The motion during the emission scan 
means that the emission paths (LORs) through the object (as considered in the 
system matrix) change during the scan time. If this time dependent change is 
not accounted for, the system model becomes inconsistent with the data, which 
results in artefacts and motion blurring in the reconstructed images. On the other 
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hand, the transmission scan (CT) is relatively short and can usually be done in 
a breath-hold mode. Consequently, the attenuation image is usually motion-free 
and captures only one particular patient position and organ configuration 
(time frame). If the attenuation factors obtained from this fixed-time position 
attenuation image are applied to the emission data acquired at different time 
frames (or averaged over many time frames), this leads to artefacts in the 
reconstructed images, which tend to be far more severe in PET than in SPECT. 
This is, for example, most extremely pronounced at the bottom of the lungs 
which can typically move several centimetres during the breathing cycle, causing 
motion between two regions with very different attenuation coefficients.

Emission data motion: Correction approaches for motion during the 
emission scan are discussed first. The first step is subdividing the data (in PET, 
typically list-mode data) into a sufficient number of time frames to ensure that the 
motion within each frame is small. For the organ movement, the frames can be 
distributed over a period of the organ motion (e.g. breathing cycle). For the patient 
motion, the frames would be typically longer and distributed throughout the 
scan time. Knowledge about the motion can be obtained using external devices, 
such as cameras with fiducial markers, expansion belts or breathing sensors for 
respiratory motion, the electrocardiogram signal for cardiac motion, etc. There 
are also a limited number of approaches for estimating the motion directly from 
the data.

Once the data are subdivided into the set of the frames, the most 
straightforward approach is to reconstruct data independently in each frame. 
The problem with this approach is that the resulting images have a poor signal 
to noise ratio because the acquired counts have been distributed into a number 
of individual (now low count) frames. To improve the signal to noise ratio, the 
reconstructed images for individual frames can be combined (averaged) after 
they are registered (and properly deformed) to the reference time frame image. 
However, for statistical non-linear iterative reconstruction algorithms, this is not 
equivalent to (and typically of a lower quality than) the more elaborate motion 
correction approaches, taking into account all of the acquired counts in a single 
reconstruction, as discussed below.

For rigid motion (e.g. in brain imaging), the events on LORs (LORi) from 
each time frame, or time position, can be corrected for motion by translation 
(using affine transformations) into the new LORs (LORi) in the reference frame 
(see F ig.  13.21 (top right, solid line)), in which the events would be detected 
if there were no motion. Reconstruction is then done in a single reference 
frame using all acquired counts, leading to a better signal to noise ratio in the 
reconstructed images. Care has to be taken with the detector normalization factors 
so that the events are normalized using the proper factors (Ni) for the LORs on 
which they were actually detected (and not into which they were translated). 
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Attenuation factors are obtained on the transformed lines (atti) through the 
attenuation image in the reference frame. Care also has to be given to the proper 
treatment of data LORs with events being translated into, or out of, the detector 
gaps or detector ends. This is important, in particular for the calculation of the 
sensitivity matrix, which then becomes a very time consuming process.

 
 

FIG. 13.21. Illustration of motion corrections for events acquired within line of response LORi with 
corresponding normalization Ni and attenuation atti factors. Left top: positions and shapes of the object in 
the reference time frame 0 and frame k. Left bottom: illustration of blurring in the reconstruction 
combining events from all frames without motion correction (attenuation factors are also averaged over 
the whole range of the frames atti0–k). Middle column: processing within the reference time frame. Right 
top: LOR based motion correction for frame k — the LORi (dashed line) has to be transformed to the LORi 
(solid line for rigid motion, dotted line for non-rigid motion) which represents the paths that the photons 
would travel through the reference object if there were no motion. It should be noted that although the 
LORs are transformed, the normalization factors are used for the crystal pairs (LORs) in which the events 
were detected (Ni), while the used attenuation factors are for the transformed paths (atti). Right bottom: 
image based motion correction, including image morphing of the estimated image from the reference frame 
(dashed lines) into the given frame (solid line).  
 

Once the data are subdivided into the set of the frames, the most straightforward approach is to 
reconstruct data independently in each frame. The problem with this approach is that the resulting images 
have a poor signal to noise ratio because the acquired counts have been distributed into a number of 
individual (now low count) frames. To improve the signal to noise ratio, the reconstructed images for 
individual frames can be combined (averaged) after they are registered (and properly deformed) to the 
reference time frame image. However, for statistical non-linear iterative reconstruction algorithms, this is 
not equivalent to (and typically of a lower quality than) the more elaborate motion correction approaches, 
taking into account all of the acquired counts in a single reconstruction, as discussed below. 

For rigid motion (e.g. in brain imaging), the events on LORs (LORi) from each time frame, or time 
position, can be corrected for motion by translation (using affine transformations) into the new LORs 
(LORi) in the reference frame (see Fig. 13.21 (top right, solid line)), in which the events would be detected 
if there were no motion. Reconstruction is then done in a single reference frame using all acquired counts, 
leading to a better signal to noise ratio in the reconstructed images. Care has to be taken with the detector 
normalization factors so that the events are normalized using the proper factors (Ni) for the LORs on which 
they were actually detected (and not into which they were translated). Attenuation factors are obtained on 
the transformed lines (atti) through the attenuation image in the reference frame. Care also has to be given 
to the proper treatment of data LORs with events being translated into, or out of, the detector gaps or 
detector ends. This is important, in particular for the calculation of the sensitivity matrix, which then 
becomes a very time consuming process. 

For non-rigid (elastic) motion, which is the case for most of the practical applications, the motion 
correction procedures become quite involved. There are two basic possibilities. The first approach is to 
derive the transformations of individual paths of events (LORs) from each frame into the reference frame 
(see Fig. 13.21 (top right, dotted line)). For the non-rigid motion, the transformed paths through the 
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FIG. 13.21.  Illustration of motion corrections for events acquired within line of response 
LORi with corresponding normalization Ni and attenuation atti factors. Left top: positions 
and shapes of the object in the reference time frame 0 and frame k. Left bottom: illustration 
of blurring in the reconstruction combining events from all frames without motion correction 
(attenuation factors are also averaged over the whole range of the frames atti

0–k). Middle 
column: processing within the reference time frame. Right top: LOR based motion correction 
for frame k — the LORi (dashed line) has to be transformed to the LORi (solid line for rigid 
motion, dotted line for non-rigid motion) which represents the paths that the photons would 
travel through the reference object if there were no motion. It should be noted that although 
the LORs are transformed, the normalization factors are used for the crystal pairs (LORs) in 
which the events were detected (Ni), while the used attenuation factors are for the transformed 
paths (atti). Right bottom: image based motion correction, including image morphing of the 
estimated image from the reference frame (dashed lines) into the given frame (solid line). 

For non-rigid (elastic) motion, which is the case for most of the practical 
applications, the motion correction procedures become quite involved. There 
are two basic possibilities. The first approach is to derive the transformations 
of individual paths of events (LORs) from each frame into the reference frame 
(see Fig. 13.21 (top right, dotted line)). For the non-rigid motion, the transformed 
paths through the reference object frame are not straight lines anymore, thus 
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leading to very large computational demands for the calculations of the forward 
and back projection operations. The same care for normalization, gaps and 
detector ends has to be taken as above.

The second, more efficient, approach involves morphing the image 
estimate (of the reference image) into the frame for which current events (LORs) 
are being processed (see Fig. 13.21 (bottom right, solid line)). It should be noted 
that some pre-sorting of the data is considered, so that events from each frame 
are processed together (using a common image morphing operation). Here, the 
acquired LORs (LORi) and their normalization coefficients (Ni) are directly used 
without modification. However, the sensitivity matrix still needs to be carefully 
calculated, taking into consideration update and subset strategy, e.g. including 
the morphing operation if subset data involve several frames. This is, however, 
a simpler operation than in the LOR based case since the morphing is done in 
the image domain. This image based approach is not only more efficient, but 
also better reflects/models the actual data acquisition process during which the 
acquired object is being changed (morphed).

Attenuation effects: In the following, it is considered that either attenuation 
information for each time frame is available, for example, having a sequence of 
CT scans for different time positions, or there is knowledge of the motion and 
tools to morph a fixed-time position CT image to represent attenuation images at 
individual time frames. It is further considered that tools are available to obtain 
the motion transformation of data and/or images between the individual time 
frames. If the emission data are stored or binned without any motion gating, they 
represent motion-blurred emission information over the duration of the scan. 
Using attenuation information for them for a fixed time position is not correct. It 
would be better to pre-correct those data using proper attenuation factors for each 
frame, but then the statistical properties (Poisson character) are lost due to the 
pre-correction. A good compromise (although not theoretically exact) is to use 
motion-blurred attenuation factors during the pre-correction or the reconstruction 
process.

For data stored in multiple time frames, separate attenuation factors (or 
their estimates) are used for each frame, such that they reflect attenuation factors 
(for each LOR) at that particular time frame. For the case when there are multiple 
CT images, this is simply obtained by calculation (forward projection) of the 
attenuation coefficients for each frame from the representative CT image for that 
frame. For the case when there is only one CT image, attenuation factors have 
to be calculated on the modified LORs (for each time frame) in the LOR based 
corrections, or to morph the attenuation image for each frame and then calculate 
the attenuation factors from the morphed images in the image based corrections.
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13.4.	NOISE ESTIMATION

13.4.1.	 Noise propagation in filtered back projection

The pixel variance in an image reconstructed with FBP can be estimated 
analytically, by propagating the uncorrelated Poisson noise in the data through 
the reconstruction operation. The FBP algorithm can be written as: 

0
( , ) d Y( cos sin )h( ) d

x
x y x y s s s

∞

−∞
= + −∫ ∫Λ    	 (13.86)

where h(s) is the convolution kernel, combining the inverse Fourier transform of 
the ramp filter and a possible low-pass filter to suppress the noise. 

The variance on the measured sinogram Y(s, ϕ) data equals its expectation 
Y (s, ϕ); the covariance between two different sinogram values Y(s, ϕ) and 
Y(sꞌ, ϕꞌ) is zero. Consequently, the covariance between two reconstructed pixel 
values Λ(x, y) and Λ(xꞌ, yꞌ) equals: 
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This integral is non-zero for almost all pairs of pixels. As h(s) is a high-pass 
filter, neighbouring reconstruction pixels tend to have fairly strong negative 
correlations. The correlation decreases with increasing distance between (x,  y) 
and (xꞌ, yꞌ). The variance is obtained by setting x = xꞌ and y = yꞌ, which produces: 
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∞
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= + −∫ ∫Λ    	 (13.88)

Figure  13.22 shows the variance image of the FBP reconstruction of 
a simulated PET sinogram of a heart phantom. The image was obtained by 
reconstructing 400 sets of noisy PET data. The figure also shows a noise-free and 
one of the noisy FBP images. The noise creates streaks that extend to the edge of 
the image. As a result, the variance is non-zero in the entire image.
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FIG. 13.22.  Simulated PET reconstructions of a heart phantom. Reconstructions were done 
with filtered back projection (FBP), maximum-likelihood expectation-maximization (MLEM) 
with Gaussian post-smoothing and with maximum a posteriori (MAP) using a quadratic prior. 
For each algorithm, a noise-free and a noisy reconstruction are shown, and also the pixel 
variance obtained from 400 independent Poisson noise realizations on the simulated PET 
data. All reconstructions (first two rows) are shown on the same grey value scale. A second 
scale was used to display the three variance images. The noisy FBP image contains negative 
pixels (displayed in white with this scale).

13.4.2.	 Noise propagation in maximum-likelihood expectation-maximization

The noise analysis of MLEM (and MAP) reconstruction is more 
complicated than that for FBP because these algorithms are non-linear. However, 
the MLEM algorithm has some similarity with the WLS algorithm, which can 
be described with matrix operations. The WLS reconstruction was described 
previously; Eq. (13.45) is repeated here for convenience (the additive term was 
assumed to be zero for simplicity):

1 1 1( ' ) '− − −= y yA C A A C y 	 (13.89)

Cy is the covariance of the data, which is defined as ( )( )'E= − −yC y y y y , where 
E denotes the expectation and y  is the expectation of y. 
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The covariance of the reconstruction is then:
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	 (13.90)

This matrix gives the covariances between all possible pixel pairs in the 
image produced by WLS reconstruction. The projection A and back projection 
Aꞌ have a low pass characteristic. Consequently, the inverse (AꞌCy

–1A)–1 acts as a 
high-pass filter. It follows that neighbouring pixels of WLS reconstructions tend 
to have strong negative correlations, as is the case with FBP. Owing to this, the 
MLEM variance decreases rapidly with smoothing.

Figure 13.22 shows mean and noisy reconstructions and variance images of 
MLEM with Gaussian post-smoothing and MAP with a quadratic prior. For these 
reconstructions, 16 iterations with 8 subsets were applied. MAP with a quadratic 
prior produces fairly uniform variance, but with a position dependent resolution. 
In contrast, post-smoothed MLEM produces fairly uniform spatial resolution, in 
combination with a non-uniform variance.
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